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Change 

 

This appendix provides methodological details on each of the Lancet Countdown’s indicators, alongside data 

sources used and caveats. Wherever suitable, future plans for the indicators and further analysis are also 

presented.  

Wherever possible and appropriate, each indicator is disaggregated into very high, high, medium, and low 

human development index (HDI) country groups, as defined by the UNDP. For this purpose, the attained level 

of HDI in the latest year of data available during the writing of this report (2021) is used, acknowledging that 

the achievement of a HDI level is the product of several years of work towards improving the parameters that 

define it. The HDI captures three core dimensions: a long and healthy life (using life expectancy as a proxy), 

education (monitored by the mean of years of Schooling in a given country), and standard of living (using per-

capita gross national income as a proxy).  

With the addition of the regional section of this report, indicators are also disaggregated by world region (often 

referred to as “LC Regions” in analyses and figures), as shown in Table 1. To allow for global coverage, the 

country groupings often differ from the regions covered by the Lancet Countdown’s regional centres.  

Table 1:  List of countries included in each global region for regional analyses. 

Region Countries Included 

Africa 

Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Central African Republic, 

Chad, Congo, Cote d'Ivoire, Democratic Republic of the Congo, Djibouti, Egypt, Equatorial 

Guinea, Eritrea, Eswatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, 

Libya, Madagascar, Malawi, Mali, Mauritania, Morocco, Mozambique, Namibia, Niger, Nigeria, 

Rwanda, Senegal, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Togo, Tunisia, 

Uganda, United Republic of Tanzania, Zambia, Zimbabwe 

Asia 

Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh, Bhutan, Brunei Darussalam, Cambodia, 

China, Cyprus, Democratic People's Republic of Korea, Georgia, India, Indonesia, Iraq, Islamic 

Republic of Iran, Israel, Japan, Jordan, Kazakhstan, Kuwait, Kyrgyzstan, Lao People's 

Democratic Republic, Lebanon, Malaysia, Mongolia, Myanmar, Nepal, Occupied Palestinian 

territory, Oman, Pakistan, Philippines, Qatar, Republic of Korea, Saudi Arabia, Sri Lanka, Syrian 

Arab Republic, Tajikistan, Thailand, Turkey, Turkmenistan, United Arab Emirates, Uzbekistan, 

Vietnam, Yemen 

Europe 

Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, 

Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, 

Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Montenegro, Netherlands, North 

Macedonia, Norway, Poland, Portugal, Republic of Moldova, Romania, Russian Federation, San 

Marino, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United Kingdom 

Northern 

America 
Canada and United States of America 

Oceania Australia and New Zealand 

SIDS 

Anguilla, Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize, Bermuda, British Virgin 

Islands, Cabo Verde, Cayman Islands, Comoros, Cook Islands, Cuba, Curaçao, Dominica, 

Dominican Republic, Federated States of Micronesia, Fiji, Grenada, Guadeloupe, Guinea Bissau, 

Guyana, Haiti, Jamaica, Kiribati, Maldives, Marshall Islands, Martinique, Mauritius, Montserrat, 

Nauru, Niue, Palau, Papua New Guinea, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Saint 

Vincent and the Grenadines, Samoa, Sao Tome and Principe, Seychelles, Singapore, Sint 

Maarten, Solomon Islands, Suriname, Timor-Leste, Tonga, Trinidad and Tobago, Turks and 

Caicos, Tuvalu, US Virgin Islands, Vanuatu 

South and 

Central 

America 

Argentina, Bolivarian Republic of Venezuela, Bolivia, Brazil, Chile, Colombia, Costa Rica, 

Ecuador, El Salvador, French Guiana, Guatemala, Honduras, Mexico, Nicaragua, Panama, 

Paraguay, Peru, Uruguay 
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Unless otherwise specified, the indicators that incorporate retrospective climate data make use of the climate 

reanalysis datasets, mostly ERA5, but also including ERA5-Land and ORAS5. These datasets incorporate vast 

amounts of historical observations, including those from satellites, to provide the most complete description of 

the observed climate as it has evolved during recent decades. Due to their temporal and geographical coverage, 

these are the most appropriate data for the purposes of the Lancet Countdown indicators. Slight discrepancies 

might exist between reanalysis datasets, and other types of retrospective climatological modelling, which 

however would only have slight impacts on findings of the indicators here presented.  

All monetary values in the Lancet Countdown are expressed in 2022 US dollars, unless stated otherwise in the 

main text or cited sources. 
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Part A: Evolving Regional Progress and Inequities in Climate Change and Health  

The data in part A provides a regional breakdown of the global indicators of the 2023 Lancet Countdown report. Using global indicators at a regional level, the data below in 

many cases will not match exactly that presented in the forthcoming regional reports of the Lancet Countdown, which often use local data sources available with higher 

resolution, coverage and quality. As such, it is intended to support comparisons between regions, rather than provide a thorough assessment of each individual region as is 

provided in the reginal reports of the Lancet Countdown.. 

Table 2: Indicator data per region. Given different geographical breakdowns and database used, the numbers below might differ from those in the regional reports 

that will be published in the first half of 2024, as these use different geographical breakdowns and often different data sources than available globally. Red tones 

indicate higher impacts, worsening trends, or climate inaction as per the first value in each cell. Green tones indicate improving trends, reduced impacts, or more 

climate action as per the first value in each cell. 

Indicator 

Number 

Description of 

Indicator 

Component 

Africa Asia Europe North America Oceania SIDS 
South & Central 

America 

1.1.4 

Average annual 

potential labour 

hours lost per 

worker in 2013-

2022 

161 hours per 

worker 

189 hours per 

worker 
3 hours per worker 

14 hours per 

worker 
7 hours per worker 

116 hours per 

worker 

59 hours per 

worker 

1.1.5 

Average annual 

change in heat-

related deaths 

2017-2022 

compared to 2000-

2005 

+ 11 deaths per 

100,000 

+ 0.6 deaths per 

100,000 

+ 9 deaths per 

100,000 

+ 3 deaths per 

100,000 

- 1 death per 

100,000 

+ 2  deaths per 

100,000 

+ 7 deaths per 

100,000 

1.1.5 

Change in average 

annual number of 

days of  health-

threatening high 

temperatures n 

2018-2022 

compared to 1998-

2002 

+32 days +24 days +13 days +15 days +11 days +49 days +26 days 

1.1.5 

Proportion of days 

of stressful 

temperatures in 

2018-2022 that 

were more likely 

because of climate 

change 

80.3% 53.7% 37.8% 35.0% 30.2% 85.5% 77.5% 
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Indicator 

Number 

Description of 

Indicator 

Component 

Africa Asia Europe North America Oceania SIDS 
South & Central 

America 

1.1.5 

Days of health-

threatening 

temperatures per 

year attributable to 

climate change in 

2018-2022 

79.6 47.8 25.5 28.0 18.5 103.4 72.4 

1.1.5 

Average heat-

related mortality in 

2017-2022, and 

average annual 

change from 2000-

2005 

43 deaths per 

100,000 (+11 

deaths per 100,000) 

36 deaths per 

100,000 (+0.6 

deaths per 100,000) 

70 deaths per 

100,000 per year 

(+9 deaths per 

100,000) 

37 deaths per 

100,000 (+3 deaths 

per 100,000) 

35 deaths per 

100,000 (-1 deaths 

per 100,000) 

11 deaths per 

100,000 (+2 

deaths per 

100,000) 

30 deaths per 

100,000 (+7 

deaths per 

100,000) 

1.2.2 

Proportion of land 

area affected by at 

least one month of 

extreme drought in 

2013-2022 vs 1951-

1960 

9% vs 64% 17% vs 43% 27% vs 36% 28% vs 33% 14% vs 55% 9% vs 45% 13% vs 53% 

1.3 

Absolute change in 

dengue R0, 

comparing 2012-

2021 to 1951-1960 

(Aedes albopictus 

mosquitos) 

0.28 0.28 0.06 0.11 0.03 0.42 1.03 

1.3 

Absolute change in 

dengue R0, 

comparing 2012-

2021 to 1951-1960 

(Aedes aegypti 

mosquitos) 

0.24 0.31 -3.8E-05 0.41 0.03 0.36 0.86 

1.3 

Proportion of 

coastline suitable 

for vibrio 

transmission in 

2022 (and average 

annual change in 

percentage of 

coastline suitable 

between 1982 and 

2022) 

16.6%  (-2km) 16.6% (+83 km) 16.8% (+142 km) 2.9% (+52km) 0.8% (-0.8km) 2.9% (+13km) 16.8% (+42km) 
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Indicator 

Number 

Description of 

Indicator 

Component 

Africa Asia Europe North America Oceania SIDS 
South & Central 

America 

1.3 

Average annual 

change in Vibriosis 

incidence 

+1074 cases +4998 cases +342 cases +421 cases +0.4 cases +10 cases +570 cases 

1.4 

Change in sea 

surface 

temperature in 

2022, compared to 

1981-2010 

+0.10°C +0.54°C +0.83°C +0.73°C +0.55°C +0.51°C -0.08°C 

2.1.3 

Proportion of cities 

responding to CDP 

survey that have 

completed a 

climate risk and 

vulnerability 

assessment 

(number of cities 

with completed 

assessment/total 

cities responding in 

region) 

62% 

(43/69) 
51% (117/231) 

82% 

(141/171) 
80% (175/220) 

92% 

(23/25) 

50% 

(1/2) 

56% 

(149/268) 

2.3.3 

Proportion of 

regional population 

settled within 1m of 

sea level 

0.6% 2.8% 1.5% 0.6% 0.7% 2.0% 0.4% 

3.1.1 

Average energy-

related emissions 

per person in 2020 

0.97 tCO2/person 3.9 tCO2/person 
6.2 

tCO2/person 
12.9 tCO2/person 13.4 tCO2/person 3.2 tCO2/person 

2.1 

tCO2/person 

3.1.1 

Change in carbon 

intensity of energy 

system, 2020 

compared to 1992 

and (time needed to 

fully decarbonise at 

pace seen between 

2011 and 2020) 

+3% (387.2 years) +10% (160.4 years) -22% (81.7 years) -15%, (80.3 years) -7%, (220.2 years) 
-14%, (50.0 

years) 
-5%, (91.6 years) 

3.1.1 

Proportion of total 

primary energy 

supply coming 

from coal in 2020 

13.6% 42.6% 12.4% 9.9% 27.1% 2.2% 5.0% 
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Indicator 

Number 

Description of 

Indicator 

Component 

Africa Asia Europe North America Oceania SIDS 
South & Central 

America 

3.1.1 

Proportion of total 

primary energy 

supply coming 

from renewable 

energies in 2020 

1.0% 2.7% 3.0% 2.4% 6.0% 0.4% 2.7% 

3.2.1 
Deaths from fuel-

derived PM2.5 in 

2020 

77,000 
1300000 280,000 17,000 158 565 24,000 

3.2.1 

Mortality 

attributed to coal-

derived PM2.5 in 

2020 

0.7 deaths per 

100,000 

11 deaths per 

100,000 

8 deaths per 

100,000 

0.8 deaths per 

100,000 

0.2 deaths per 

100,000 

2 deaths per 

100,000 

0.2 deaths per 

100,000 

3.2.2 

Mortality 

attributed to dirty 

fuels' PM2.5  in 

2020 (percentage 

from coal ) 

6 deaths per 

100,000 (11.7%) 

30 deaths per 

100,000 (36.7%) 

38 deaths per 

100,000 

(21.1%) 

5 deaths per 

100,000 

(16.0%) 

0.5 deaths per 

100,000 

(40.0%) 

5 deaths per 

100,000 

(40.0%) 

4 deaths per 

100,000 

(5.0%) 

3.2.2 

Proportion of 

household energy 

consumption from 

biomass and waste 

burning 

83.6% 32.4% 11.2% 4.8% 10.8% 45.9% 33.1% 

3.2.2 

Proportion of 

household energy 

from clean energies 

6.8% 33.4% 37.4% 48.3% 54.2% 34.7% 33.9% 

3.3.1 

Emissions per 

person from the 

consumption of red 

meat and dairy 

0.42 0.36 0.35 0.58 1.05 0.25 0.66 

3.3.2 

Mortality from 

insufficient 

consumption of 

fruits and 

vegetables 

25 deaths per 

100,000 

36 deaths per 

100,000 

77 deaths per 

100,000 

37 deaths per 

100,000 

52 deaths per 

100,000 

38 deaths per 

100,000 

31 deaths per 

100,000 

3.3.2 

Mortality 

attributable to 

excess consumption 

of red and 

processed meat 

3 deaths per 

100,000 

6 deaths per 

100,000 

37 deaths per 

100,000 people 

38 deaths per 

100,000 people 

29 deaths per 

100,000 people 

9 deaths per 

100,000 

13 deaths per 

100,000 



8 

 

Indicator 

Number 

Description of 

Indicator 

Component 

Africa Asia Europe North America Oceania SIDS 
South & Central 

America 

4.1.3 

Potential income 

losses due to heat-

related labour 

hours lost, as 

percent of GDP 

4.1% 2.6% 0.1% 0.2% 0.1% 2.7% 1.3% 

4.1.3 

Percent of heat-

related labour 

income losses that 

were in 

agricultural sector 

81.4% 52.6% 38.6% 8.0% 11.6% 68.3% 41.3% 

4.2.4 
Median net carbon 

price 
-43.7 $/t -12.6 $/t -1.4 $/t +0.9 $/t -9.6 $/t -9.8 $/t -19.4 $/t 

5.3.1 

Number of peer-

reviewed articles 

studying the region 

254 1095 305 398 80 51 142 

5.4.1 

Proportion of 

countries 

mentioning health 

in first round of 

nationally 

determined 

contributions (total 

number NDCs) 

98% (47) 88% (42) 14% (43) 50% (2) 33% (3) 84% (38) 100% (16) 

5.4.1 

Proportion of 

countries 

mentioning health 

in second round of 

nationally 

determined 

contributions (total 

number NDCs) 

98% (41) 88% (33) 92% (38) 100% (2) 0% (2) 100% (31) 100% (16) 

5.4.1 

Average proportion 

of countries 

referring to the 

climate-health 

nexus in the United 

Nations General 

Debate in 2013-

2020 

26.7% 22.8% 28.7% 35.0% 45.0% 44.9% 18.7% 
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Indicator 

Number 

Description of 

Indicator 

Component 

Africa Asia Europe North America Oceania SIDS 
South & Central 

America 

  0.236105 0.312581 -3.8E-05 0.40631 0.027157 0.364097 0.856134 
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Part B: Taking Stock of Progress on Climate Change and Health 

The indicators of the Lancet Countdown are designed and selected based on well-defined criteria, to ensure their 

capacity to track progress on health and climate change. These criteria are presented on the collaboration’s 

website and reproduced below:1  

All indicators must track an aspect of the relationship between health and climate change, well evidenced in the 

literature and not adequately covered through other indicators in the report; utilise data from a reliable source, 

available at adequate temporal and spatial scales to enable trends to be observed at a global level; and be 

updatable periodically, ideally annually or more regularly. 

More specifically, all indicators must be:  

• Meaningful: Track an aspect of the relationship between health and climate change that is well 

evidenced in the literature, and relevant at a global level. 

• Relevant: The area being tracked by the indicator must be of relevance to policy and decision makers, 

and/or represent an important contribution to the field of science of climate change and health 

• Scientifically sound and reproducible: The indicator must use a well-established, internationally 

accepted, and ideally previously published scientific methods. 

• Temporally representative: The indicator should provide annual data for the recent past and to a year as 

recent as possible. It must be available across an adequate timescale to allow for attribution to climate 

change, where relevant. 

• Geographically representative: The indicator should be ideally available at a country, or higher level of 

resolution. Its geographical coverage should be enough for global trends to be observed, covering at 

least 40 countries evenly distributed across the four World Bank income contexts, the four Human 

Development Index Groups, and the five WHO regions initially, with possibility of expansion to 150 

countries at least. In the case of indicators tracking aspects relevant to restricted locations, over 80% of 

relevant countries must be covered by the indicator. 

• Reliable and use updatable sources: The indicator should use data from a reliable source, fit for its 

purpose. Publicly available databases, and especially those developed by international organisations, 

governmental bodies or academic institutions, are preferred. Data sources must be regularly updated. 

 

Section 1: Health Hazards, Exposures, and Impacts 

Lead Author: Prof Elizabeth J. Z. Robinson 

Research Fellow: Dr Claudia DiNapoli 

1.1: Heat and Health 

Indicator 1.1.1: Exposure to Heating 

Indicator author 

Dr Jonathan Chambers 

Methods  

The input data for this indicator have been extended for the 2023 report.  

The indicator uses monthly temperature from European Centre for Medium-Range Weather Forecasts (ECMWF) 

ERA5 climate reanalysis dataset. From this, a baseline global mean temperature grid was first calculated as the 

average of summer temperatures (June, July, August for the northern hemisphere; December, January, February 

for the southern hemisphere) from 1986–2005, the same period used by the Intergovernmental Panel on Climate 
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Change (IPCC AR5).2 Then global summer temperature changes relative to the 1986–2005 average were 

calculated for every grid point for every year and weighted by true pixel area to obtain a year-by-year global 

average. The ‘population-weighted’ average was calculated by weighting each grid cell by the fraction of the total 

world population contained within that grid cell. This method allows the difference between global effects of 

climate change and the effects experienced by the human population to be highlighted. 

Population data from 2000 to present are from NASA GPWv4 dataset at 0.25° x 0.25° spatial resolution, the same 

as ECMWF ERA5. Population data from 1980 to 2000 are from the ISIMIP Histsoc dataset at 0.5° x 0.5° spatial 

resolution. In the main text both the Histsoc-derived findings (1980–2000) and the GPWv4-derived findings 

(2000–2021) are presented. 

Data  

1. Climate data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis.3  

2. Population data from the NASA Socioeconomic Data and Applications Center (SEDAC) Gridded Population 

of the World (GPWv4) and The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Histsoc 

dataset.4,5  

Additional analysis 

Population weighted temperatures are increasing 2.5 times faster than global mean temperatures (linear regression 

slope of 0.027˚C per year compared to 0.011˚C per year; p-value <0.05). In 2022, the global mean summer 

anomaly was 0.30˚C while the population weighted summer anomaly was 0.85˚C relative to the 1986–2005 

baseline (Figure 1). Locally, these anomalies can be significantly higher at over 6˚C (Figure 2). Analysis of the 

anomaly grouped by HDI (Human Development Index) level and WHO (World Health Organisation) region show 

that the trends are global and do not indicate any particular difference across levels or regions (Figure 3, Figure 

4). 

 

 

Figure 1: Global mean trends of summer temperature anomaly compared to the population weighted trend 

(relative to the 1986–2005 baseline). Results before 2000 are drawn from the 2020 edition of the Lancet 

Countdown and are calculated on the lower 0.5˚ grid resolution. 
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Figure 2: Map of summer temperature anomaly for 2022 relative to the 1986–2005 baseline. 

 

 

 

Figure 3: Exposure weighted change in summer temperatures relative to 1986–2005 baseline by HDI level. 
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Figure 4: Exposure weighted change in summer temperatures relative to 1986–2005 baseline by WHO 

region. 

 

 

Figure 5: Exposure weighted change in summer temperatures relative to 1986–2005 baseline by Lancet 

Countdown group region. 
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Indicator 1.1.2: Exposure of Vulnerable Populations to Heatwaves 

Indicator author 

Dr Jonathan Chambers  

Methods  

The input data for this indicator have extended for the 2023 report and include future climate projections.  

The indicator defines a heatwave as a period of 2 or more days where both the minimum and maximum 

temperatures are above the 95th percentile of the local climatology (defined on the 1986–2005 baseline). This 

reflects the definition from published scientific literature on the topic.6 It also aims to capture the health effects of 

both direct heat extremes (i.e., caused by high maximum temperatures) and the problems associated with lack of 

recovery (i.e., caused by high minimum temperatures) over persisting hot periods.7 The gridded 95th percentile of 

daily minimum and maximum temperatures, taken from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA5 dataset, were calculated on a 0.25° x 0.25° global grid for 1986–2005. For each year 

from 1980 to 2020, the number of heatwave events and total days of heatwaves per year was calculated according 

to the definition above. 

Data were used from ISIMIP3b for the baseline period 1995–2014 and 5 GCM variants for SSP1-2.6 and SSP3-

7.0 were used for future climate projections. Days of heatwave per year were calculated for each year 1995–2014, 

2021–2040, 2041–2060, and 2081–2100 at a 0.5° x 0.5° grid resolution. The number of days of heatwave per year 

per grid cell was averaged for each time period. 

Vulnerable populations are defined as those above the age of 65 and infants between 0 and 1 years old. Previous 

research has identified these groups as being particularly vulnerable to heatwave impacts on health.8  

Data inspection has shown that increasing heatwave length can result in fewer discrete heatwave events as they 

merge into single long events – this is therefore better captured by the person-days metric. To reflect that, the 

exposure of vulnerable populations to heatwaves is computed as person-days, i.e., by multiplying the number of 

heatwave days by vulnerable population count. In this way, the indicator captures both the changes in duration 

and changes in frequency of heatwaves, as well as the changing demographics that might mean more vulnerable 

people are at risk.9  

Population and demographic data from NASA GPWv4 were used for the period 2000–2020 as the resolution 

matches ECMWF ERA5’s. For the period pre-2000, the ISIMIP Histsoc dataset was used after being up-sampled 

to a 0.25° x 0.25° resolution via a 2D linear interpolation of population densities with land area data from NASA 

GPWv4. As the population data are discontinuous, there can be some inconsistencies between the pre and post 

2000 values. Therefore, the indicator is presented as exposure to change rather than change in exposure, as this 

avoids calculating changes in population across the data discontinuity. The hybrid dataset, available on open 

access9 and new to last year’s 2022 report, refers to a population older than 65 years old.  

The number of births minus the mortality rate of children under 1 was used as an approximation of the number of 

children under 1 year old. The United Nation World Population Prospects (UN WPP) data for birth rates were 

used. UN WPP provides Crude Birth Rate (CBR) and Infant Mortality Rate (IMR) values per country as averages 

for 5-year periods. To estimate the spatial distribution of births within a country, it was assumed that the spatial 

distribution of children under one year of age is the same as the spatial distribution of children under 5 as given 

by the NASA GPWv4 dataset. Furthermore, it was assumed that the IMR within a country is constant for all 

locations, as sub-national data cannot be applied for this study. For each country, the total number of births was 

calculated for the mid-period year of the 5-year time periods as Country population * CBR * (1 - IMR). Spatial 

weighting matrices were derived from the NASA GPWv4 demographic data for under-5s and used to estimate the 

total births and number of infants for each grid cell for each country. Finally, the estimates for the years in between 

the mid-period years were calculated through linear interpolation. 

The heatwave exposure projections were obtained by multiplying the heatwave days per grid cell averaged over 

each time period by the vulnerable population per grid cell in the middle of the time period. 

Data  
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1. Climate data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis.10  

2. Future climate projections from ISIMIP 3b protocol.11 

3. Hybrid gridded demographic data for the world, 1950–2020, 0.25° resolution.12  

4. Demographic data from the United Nation World Population Prospects (UN WPP).13  

5. Future demographic data from Briggs et al 2022.14 

Caveats  

In order to estimate the time evolution of demographics, data from diverse sources were combined in order to 

obtain estimates of both the spatial and temporal characteristics. This has been subject to limited validation. Some 

regions have limited demographic data. Others show changes in political boundaries which can cause 

discontinuities in the spatial assignment of demographic values. 

Future form of the indicator 

Future versions of the indicator aim to use ECMWF ERA5-Land data at 0.1° x 0.1° spatial resolution. The 

increased data volume at the global level, plus the need to adapt corresponding population data, requires upgrades 

to the data processing. 

Additional analysis 

Figure 6 summarises the change in number of heatwave days in 2022 relative to the baseline. Intense events in 

Western USA, central Europe, Russia, the Middle east, Northwest Africa, Central Africa, South-West Africa and 

Madagascar are evident. Figure 7 highlights that absolute exposures are larger in the over-65 age group. However, 

as shown in Figure 10, in the ‘low’ HDI class countries the exposure of over 65s is much lower than the other 

classes whereas the values for infants follow the same pattern as the other classes. This is likely related to lower 

life expectancy in countries in the ‘low’ HDI class. This trend is not reflected in the breakdown by country or 

WHO region (Figure 8, Figure 11). 

To better understand the magnitude of changes in heatwave exposure, comparisons of the total exposure counts 

(i.e., not relative to the baseline heatwave count) between first and second decades of the 20th century are carried 

out. Figure 9 illustrates that some regions (notably Africa) have experienced changes of over +400% person-days 

of heatwave (i.e., 5 times as many person-days) between these two decades. 
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Figure 6: Map of the change in number of heatwave days over land in 2022 relative to the 1986–2005 

baseline. 
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Figure 7: Total person-days of heatwave experienced by people over 65 and infants under 1 year old to 

heatwave days. ISIMIP population data is used for 19802000, GPWv4 population data is used for 2000–

2022. 

a)  

b)  

Figure 8: Total exposure of a) infants and b) people over 65 to change in number of heatwave days relative 

to the 1986–2005 baseline mean number of days. 

 



18 

 

a)  

b)  

Figure 9: Percentage change in heatwave exposure person-days per year between the 10-year average of 

2001–2010 and 2011–2020 for a) infants and b) over-65s. 

 

 

Figure 10: 10-year rolling mean of exposure weighted heatwave days aggregated by HDI level. 

 



19 

 

 

Figure 11: 10-year rolling mean of exposure weighted heatwave days aggregated by WHO region.  
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Indicator 1.1.3: Heat and Physical Activity 

Indicator authors 

Dr Troy J Cross, Dr Samuel H Gunther, Prof Ollie Jay, Dr Jason KW Lee 

Methods  

The methodology for this indicator has been updated and improved from the 2022 report of the Lancet 

Countdown.15 In addition to calculating our indicator for different physical activity intensities, our estimation of 

moderate-, high–, and extreme-risk hours now incorporates the thermal effects of solar radiation by restricting the 

analyses to local sunlight hours only, as the underlying policy assumes solar radiation and is therefore not 

applicable to night-time hours. We have also included results for moderate-intensity as well as light-intensity 

exercise. 

Hourly temperature, and dew point temperature data were retrieved from European Centre for Medium–Range 

Weather Forecasts (ECMWF) ERA5 climate reanalysis datasets. While ERA5 data are available from 1979, data 

from the years 1991 to 2022 were considered for the purposes of this analysis. 

Heat stress risk was estimated from these variables in accordance with the 2021 Sports Medicine Australia 

Extreme Heat Policy, which stratifies estimated heat stress risk into four categories – low, moderate, high, and 

extreme – based on ambient temperature and relative humidity.16 Sports and activities are further classified into 

five risk classification groups – ranging from leisurely walking to mountain biking – based on intensity of the 

activity and clothing worn.16 The present analysis includes assessments of heat stress risk for Risk Classification 

1, which we term “low intensity” (e.g., leisurely walking) and Risk Classification 3, which we term “moderate 

intensity” (e.g., jogging, cycling). 

The number of hours in each grid cell with a recorded temperature and humidity combination that exceeded at 

least the threshold for “moderate”, “high”, and “extreme” heat stress risk for Risk Classifications 1 and 3 were 

tabulated for each year from 1990 to 2022. Specifically, the temperature–dependent humidity thresholds were 

defined using the following functions: 

For Risk Classification 1 (light intensity): 

Moderate heat stress risk:  

f(x) = 2762.197061 – 381.325699*x + 22.540429*x2 – 0.686335*x3 + 0.010572*x4 – 0.000066*x5 

High heat stress risk: 

f(x) = 580.945552 – 34.947074*x + 0.861360*x2 – 0.012029*x3 + 0.000126*x4 – 0.000001*x5 

Extreme heat stress risk: 

f(x) = 526.925669 – 26.920743*x + 0.492041*x2 – 0.002915*x3 – 0.000010*x4 – 0.000000*x5 

For Risk Classification 3 (moderate intensity): 

Moderate heat stress risk:  

f(x) = 1329.057633 – 133.978794*x + 5.779444*x2 – 0.128679*x3 + 0.001425*x4 –0.000006*x5 

High heat stress risk: 

f(x) = 1242.422310 – 116.614628*x + 4.713013*x2 – 0.098193*x3 + 0.001011*x4 – 0.000004*x5 

Extreme heat stress risk: 

f(x) = 1507.777140 – 144.871106*T + 5.952094*x2 – 0.124422*x3 + 0.001276*x4 –0.000005*x5 

where: x is 2–meter temperature in a given hour and f(x) is 2–meter relative humidity derived from dew point 

temperature in a given hour. 

These threshold functions are defined by Sports Medicine Australia as the boundary above which the risk of 

exertional heat illness changes, and the following preventive action should be taken:16 

• “moderate” heat stress risk: additional rest breaks should be undertaken; 

• “high” heat stress risk: active cooling strategies (e.g., water dousing) should be implemented; 

• “extreme” heat stress risk: activities should be suspended due to excessive heat stress risk. 
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The functions in the 2021 Sports Medicine Extreme Heat Policy extend to a minimum ambient temperature of 

26°C. Accordingly, any values recorded below this temperature, irrespective of ambient humidity, were 

determined as presenting a “low” heat stress risk. 

Using the sunrise and sunset times determined using the same suncalc R package,17 the hours of daylight for each 

day and derived hourly temperature in the sun were determined using equation 2 as described by Luedeling.18 The 

average daily temperature and average relative humidity for a given day were then used to back–calculate dew 

point temperature (assuming it is constant throughout the day). Plotting hourly temperature against hourly relative 

humidity allowed calculation of the number of hours above the risk threshold. The total number of sunlight hours 

per year exceeding each threshold in each grid cell was then weighted by population. Population weighting was 

performed by multiplying the number of hours per year that at least exceeded each threshold by the population, 

as provided by the GPWv4.11 (UN) WPP Adjusted population count dataset, in the respective grid cell. The 

population–weighted potential hours at least exceeding each threshold in a single year were added up for all grid 

cells in a given country, and these values were divided by the total population of the country in that year to 

calculate the number of hours per person that at least exceeded the “moderate”, “high” and “extreme” heat stress 

risk thresholds for each Risk Classification group. 

For projection of future high–risk hours, ISIMIP3b bias–adjusted models were used to derive hourly estimates of 

future temperatures,11 while future population data were obtained from a gridded dataset which combined CIESIN 

data and the gridded population data set version 2 by David Briggs.  

Data  

1. Climate data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis.3 

2. Population data from the NASA Socioeconomic Data and Applications Center (SEDAC) Gridded Population 

of the World (GPWv4) - UN WPP-Adjusted Population Count, v4.11.19  

3. Future temperature and humidity projections from the Inter-Sectoral Impact Model Intercomparison Project 

(ISIMIP3b).11 

Caveats  

Heat stress risk for each exercise intensity classification may differ among people due to various risk factors. For 

example, older adults may have age-related reduction in sweating which compromises their ability to keep cool 

and could elevate their exertional heat stress risk at a given combination of temperature and humidity. Other 

groups that may have a greater heat stress risk include young children, people wearing heavy clothing or living 

with disabilities or chronic diseases. A more detailed interpretation model of the heat effects of exercise would 

incorporate individual factors such as age, health status, and clothing.20 While the 2023 analysis excluded hours 

without sunlight, the SMA policy assumes summertime strength of solar radiation. Heat stress risk in early spring 

and later autumn months may therefore be overestimated. It was also assumed that population averages for an 

entire year were applicable to each hourly grid cell, which may not be true, but this approach still provides a rough 

estimate of population assuming an even rate of influx and outflux from each cell at the country level.  

Future form of the indicator 

Results will be updated using each new year of available climate data and, as sports authorities issue their updated 

threshold guidelines, they will be expressed according to the latest policy developments. Subsequent versions of 

the indicator will integrate solar radiation data to overcome the current assumption of summertime levels of solar 

radiation intensity throughout the year. Future versions will explore the derivation of different heat stress risk 

thresholds for different subpopulation groups, e.g., acclimatized, unacclimatized, elderly.  

Additional analysis 

The primary analysis for this indicator was conducted for leisurely walking (risk classification 1) and cycling or 

running (risk classification 3) at the global level. But our analyses were also carried out at the level of LC country 

group, WHO country group, and HDI country group.  

LC Country Group 
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For risk classification 1 (Figure 12), when separated by LC country group, relative to a baseline of 1991 to 2000 

(inclusive) the number of hours that exceeded the threshold for moderate, high, and extreme heat stress risk 

increased in the period between 2013 and 2022 (inclusive), as follows: 

Europe: by 27 (63% increase), 6 (112% increase), and 0 (0% increase) hours per person per year, respectively 

Oceania: by 27 (18% increase), 5 (8%), and 1 (16%) hour per person per year, respectively 

Northern America: by 115 (27% increase), 68 (31%), and 15 (81%) hours per person per year, respectively 

South and Central America: by 198 (20% increase), 170 (37%), and 43 (84%) hours per person per year, 

respectively 

SIDS: by 410 (20% increase), 429 (44%), and 39 (189%) hours per person per year, respectively 

Africa: by 229 (20% increase), 218 (38% increase), and 62 (160% increase) hours per person per year, respectively 

Asia: by 248 (16% increase), 269 (24%), and 211 (58%) hours per person per year, respectively 

 

 

Figure 12: Average annual hours per person that light physical activity (SMA Risk Classification 1) entailed 

at least a moderate, high, or extreme heat stress risk by LC country (Europe, Oceania, Northern America, 

South and Central America, SIDS, Africa, Asia) grouping, 1991–2022. 

 

For risk classification 3 (Figure 13), when separated by LC country group, in 2022 to 2013 (inclusive) the number 

of hours exceeding the threshold for moderate, high, and extreme heat stress risk increased, relative to a baseline 

of 1991 to 2000 (inclusive), as follows: 

Europe: by 248 (15% increase), 216 (14% increase), and 1 (118% increase) hour per person per year, respectively 

Oceania: by 43 (20% increase), 10 (11%), and 3 (16%) hours per person per year, respectively 

Northern America: by 134 (26% increase), 90 (28%), and 36 (46%) hours per person per year, respectively 

South and Central America: by 201 (17% increase), 190 (27%), and 97 (60%) hours per person per year, 

respectively 

SIDS: by 393 (17% increase), 408 (26%), and 155 (104%) hours per person per year, respectively 

Africa: by 248 (18% increase), 230 (26% increase), and 144 (78% increase) hours per person per year, respectively 

Asia: by 248 (15% increase), 256 (19%), and 257 (39%) hours per person per year, respectively 

 

 

Figure 13: Average annual hours per person that moderate physical activity (SMA Risk Classification 3) 

entailed at least a moderate, high, or extreme heat stress risk by LC country (Europe, Oceania, Northern 

America, South and Central America, SIDS, Africa, Asia) grouping, 1991–2022. 

 

WHO Country Group 
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For risk classification 1 (Figure 14), when separated by WHO country group, relative to a baseline of 1991 to 

2000 (inclusive) the number of hours that exceeded the threshold for moderate, high, and extreme heat stress risk 

increased in the period between 2022 and 2013 (inclusive), as follows: 

Africa: by 220 (18% increase), 229 (36% increase), and 72 (165% increase) hours per person per year, respectively 

Americas: by 186 (23% increase), 146 (38%), and 33 (89%) hours per person per year, respectively 

Eastern Mediterranean: by 196 (18% increase), 149 (22%), and 91 (29%) hours per person per year, respectively 

Europe: by 42 (62% increase), 11 (85%), and 1 (60%) hour per person per year, respectively 

SE Asia: by 252 (11% increase), 320 (19%), and 302 (54%) hours per person per year, respectively 

Western Pacific: by 195 (20% increase), 204 (29% increase), and 119 (62% increase) hours per person per year, 

respectively 

 

 

Figure 14: Average annual hours per person that light physical activity (SMA Risk Classification 1) entailed 

at least a moderate, high, or extreme heat stress risk by WHO country (Africa, Americas, Eastern 

Mediterranean, Europe, SE Asia, Western Pacific) grouping, 1991–2022. 

 

For risk classification 3 (Figure 15), when separated by WHO country group, in 2022 to 2013 (inclusive) the 

number of hours exceeding the threshold for moderate, high, and extreme heat stress risk increased, relative to a 

baseline of 1991 to 2000 (inclusive), as follows: 

Africa: by 246 (18% increase), 226 (24% increase), and 163 (80% increase) hours per person per year, respectively 

Americas: by 197 (20% increase), 168 (28%), and 80 (62%) hours per person per year, respectively 

Eastern Mediterranean: by 204 (15% increase), 180 (20%), and 111 (24%) hours per person per year, respectively 

Europe: by 63 (52% increase), 23 (74%), and 3 (83%) hours per person per year, respectively 

SE Asia: by 230 (9% increase), 283 (14%), and 338 (34%) hours per person per year, respectively 

Western Pacific: by 201 (19% increase), 196 (23% increase), and 172 (46% increase) hours per person per year, 

respectively 

 

 

Figure 15: Average annual hours per person that moderate physical activity (SMA Risk Classification 3) 

entailed at least a moderate, high, or extreme heat stress risk by WHO country (Africa, Americas, Eastern 

Mediterranean, Europe, SE Asia, Western Pacific) grouping, 1991–2022. 

 

HDI Country Group 

For risk classification 1, when separated by HDI country group, relative to a baseline of 1991 to 2000 (inclusive) 

the number of hours that exceeded the threshold for moderate, high, and extreme heat stress risk increased in the 

period between 2022 and 2013 (inclusive), as follows: 
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Low: by 127 (9% increase), 147 (17% increase), and 62 (28% increase) hours per person per year, respectively 

Medium: by 232 (11% increase), 276 (18%), and 259 (48%) hours per person per year, respectively 

High: by 185 (19% increase), 174 (28%), and 78 (55%) hours per person per year, respectively 

Very High: by 141 (33% increase), 117 (45%), and 57 (141%) hours per person per year, respectively 

 

For risk classification 3 (Fig.6), when separated by HDI country group, in 2022 to 2013 (inclusive) the number of 

hours exceeding the threshold for moderate, high, and extreme heat stress risk increased, relative to a baseline of 

1991 to 2000 (inclusive), as follows: 

Low: by 149 (9% increase), 136 (11% increase), and 117 (27% increase) hours per person per year, respectively 

Medium: by 217 (9% increase), 253 (14%), and 284 (30%) hours per person per year, respectively 

High: by 194 (18% increase), 179 (22%), and 128 (42%) hours per person per year, respectively 

Very High: by 158 (32% increase), 126 (37%), and 90 (78%) hours per person per year, respectively 

 

 

Figure 16: Average annual hours per person that moderate physical activity (SMA Risk Classification 3) 

entailed at least a moderate, high, or extreme heat stress risk by HDI country (Low, Medium, High, Very 

High) grouping, 1991-2022.  
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Indicator 1.1.4: Change in Labour Capacity 

Work hours lost 

Indicator authors 

Chris Freyberg, Dr Bruno Lemke, Matthias Otto 

Methods  

The input data for this indicator have extended for the 2023 report and include future climate projections.  

The indicator is based on 68,940 grid cell data (0.5 x 0.5 degrees with boundaries exactly on the degree and half 

degree co-ordinates) for climate and population. The focus is on trends since the end of the 20th century and on a 

method that can calculate labour capacity loss at country level. The model data chosen for the calculations were 

the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis hourly data on single 

year levels, and the analysis method is described in detail in the paper by Kjellstrom et al., 2018.21  

Analysis starts from hourly ambient (t2m) and dew point temperatures (d2m), as well as short wave (solar) 

radiation downward (ssrd). These inputs are used to derive the hourly heat stress index Wet Bulb Globe 

Temperature (WBGT) and, from that, the work loss factor (WLF) at three different metabolic rates in both the 

shade and the sun is calculated. The inclusion of the solar component represents a novelty for the 2022 report.  

The full Liljegren formula for calculating WBGT in the sun was used for one year (2010) for all grid cells.  This 

involved also downloading ERA5 surface pressure, surface thermal radiation downwards, total sky direct solar 

radiation at surface.  With this data, a good approximation for WBGT uplift in the sun was determined from 

WBGT in the shade. Tested in warm to hot Koppen climate regions, this uplift was 0.0035 * ssrd, which matched 

the Liljegren WBGT calculation to ±0.2 C. As the Liljegren WBGT calculation15 also requires air speed, an air 

movement of 1 m/s was used as the approximate minimum apparent wind speed generated by the movement of 

arms and legs during work. 

For indoor work, exposure was assumed to be atmospheric heat in the shade without effective air conditioning. 

The impact of heat on labour capacity depends on clothing (assuming light clothing for all) and metabolic rate 

based on physical work activity. The methodology considers 3 metabolic rates: 200W (light work, sitting or 

moving around slowly), 300W (medium intensity work) and 400W (heavy labour). 

The function relating WLF (the fraction of work hours lost) to an hourly WBGT level is given by the cumulative 

normal distribution (ERF) function: 

𝐿𝑜𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
1

2
(1 + ERF (

WBGThourly − WBGTaver

WBGT SD ∗ √2
)) 

where WBGTaver and WBGTSD are the parameters (Table 3) in the function for a given activity level. 

The data were then aggregated to provide estimates of annual WLF between the hours of 6 am–6 pm local solar 

time for each grid-cell. 

Table 3: Input values for labour loss fraction calculation. 

Metabolic rate WBGTaver WBGT SD 

200 Watts 35.5 3.9 

300 Watts 33.5 3.9 

400 Watts 32.5 4.2 

 

For each grid cell, the working age population (15+ years old; as in the ILOSTAT data) for each time period is 

used as input data as well as the percentages of people in this age range working in 4 sectors: agriculture, 

construction, manufacturing, and “other” sectors, which include the service sector (based on ILOSTAT data). 

Populations in grid cells that overlap country borders have been apportioned to the countries involved based on 

population distribution within the cell (variable CountryPop% in the formulas below). 
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For the work hours lost (WHL), ILO sector proportions are assigned to metabolic rates and sun, or indoors/shade 

calculations applied as shown in Table 4: 

Table 4: Employment sector to metabolic rate assignment. 

Metabolic rate: 200W (shade), 

light work 

300W (shade), 

moderate work 

400W (sun), 

heavy labour 

Employment sector: Other 

(mainly services) 

Manufacturing Agriculture + 

Construction 

 

The total annual work hours lost (WHL) for each metabolic rate and country (as well as a global aggregate) are 

calculated by, first, for each grid cell multiplying each employment sector population by the relevant work loss 

factor and then, second, summing the resulting sector work hours lost over all grid-cells in each country: 

Annual WHL200W (per country) = 

      Σ(for each country grid-cell): Pop15plus * CountryPop% * Other% * WLF200W 

Annual WHL300W (per country) = 

      Σ(for each country grid-cell): Pop15plus * CountryPop% * Manuf% * WLF300W 

Annual WHL400W (per country) = 

      Σ(for each country grid-cell): Pop15plus * CountryPop% * (Agr% + Constr%) * WLF400W 

Then: Total Annual WHL (country) = Annual WHL200W + Annual WHL300W + Annual WHL400W 

The annual work hours lost per person (WHLpp) are arrived at by dividing the total annual country WHLs by the 

total number of employed people in each country for each year.  The annual total number of employed people for 

each country is calculated like: 

Annually Employed People (per country) = 

   (Agr% + Manuf% + Constr% + Other%) * Σ(for each country grid-cell): Pop15plus * CountryPop% 

To estimate the effects of modelled climate projections on productivity loss, the input data for this indicator to the 

CVM 2022 report22 were used. The CVM data contain work-loss factors (WLF, percentages) for each country for 

4 time periods: 1995–2014 (the baseline), 2021–2040, 2041–2060 and 2081–2100, and for two socioeconomic 

and RCP pathways (SSP) 126 and 370.  WLF calculated from five climate models (GFDL, IPSL, MPI, MRI, 

UKESM) have been averaged. In order to compare WLF projections based on the ISIMIP 3b dataset with WLF 

derived from ERA5 historical climate data, the projected work-loss figures have been scaled to the equivalent 

baseline time-period of the historical data. Specifically: 

For each country and metabolic rate (200, 300, 400W and 400Wsun): 

WLFbl_hist = average (WLFhist1995…WLFhist2014)  [baseline, historical WLF] 

For each post-baseline time period and SSP in the projections: 

WLFp = WLFbl_hist + WLFcvm – WLFbl_cvm   [scaled projected WLF] 

where WLFcvm is WLF used in CVM, WLFbl_cvm WLF from CVM baseline (1995–2014) 

For the whole world, country WLFp were population-weighted to produce global WLFp (for each post-baseline 

time period, SSP and metabolic rate).  The populations used are each country’s working age population (age 15-

64) which is relevant for weighting work-loss. 

Results of the analysis combining the historical work capacity losses with future projections are shown in Figure 

19: Historical and projected work capacity loss under two Socioeconomic Pathways (126 and 370).  All 

working conditions in the shade unless indicated otherwise.Figure 19. 

Data  

1. Climate data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis.23  
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2. Population data from the NASA Socioeconomic Data and Applications Center (SEDAC) Gridded Population 

of the World (GPWv4).4  

3. Sector employment data from ILOSTAT.24  

4. Future climate projections from ISIMIP 3b protocol.11 

Caveats  

The distribution of agricultural, construction, manufacturing and other sector workers is only reported at country 

level, hence this proportion is distributed evenly to all grid cells within each country, and thus does not capture 

the geographical differences in the proportion of people working in the different sectors.  

Analysis performed with the above-described methodology has shown that the ERA5 data regularly understate 

maximum air temperatures. The ERA5 deviation from the ensemble average of several other data sources varies 

by location, is generally in the order of 1–4°C lower and is especially pronounced in coastal regions.  Combined 

with often high population concentrations near the coast, the WHL results presented here are conservative. As a 

comparison, when applying the WHL calculations to climate data input sourced from ISIMIP or weather stations, 

WHL estimates increase by 40%. Differences between disparate climate datasets have been compensated for when 

combining projections with historical data for this indicator (see tail-end in the Methods section). 

Future form of the indicator 

Improved methods are currently under development for estimating labour capacity loss from climate and 

demographic data.  Future versions of the indicator may employ these improvements after they have been tested 

and validated.  There may be alternative proxies for productivity loss other than the number of work hours lost.  

For example, the team is exploring the concept of Safe Work Hours. 

Additional analysis 

Across the globe, in 2022, 490 billion work hours may have been lost due to heat, equivalent to an average of 143 

work hours per employed person (Table 5). Twelve countries, the three most populous at each HDI (Human 

Development Index) level, account for >70% of the total global work hours lost. The three worst affected countries 

are on the low and medium HDI level and rank highest in the world’s work hours lost per employee, 2.5 times the 

world average. The three biggest countries in the highest HDI category account for the smallest numbers of 

employment hours lost. 

 

Table 5: Annual heat-related work hours lost per employed person (agriculture & construction exposed to 

the sun, all other sectors in shade or indoors) and total WHL in populous countries. Three countries with 

largest populations in each of the four HDI categories are ranked by WHLpp in 2022. 

 

ISO3 

code 

Human 

development 

level 

Work 

hours lost 

per 

employed 

person 

1991–2000 

Work 

hours 

lost per 

employed 

person in 

2022 

Billions 

of 

work 

hours 

lost in 

2022 

% of 

global 

Global    139.2 143.4 490.7  

Pakistan PAK Low 338.3 355.2 26.4 5.4% 

India IND Medium 341.6 353.7 190.6 38.9% 

Bangladesh BGD Medium 392.6 349.9 25.5 5.2% 

Democratic Republic of the Congo COD Low 198.9 217.7 7.7 1.6% 

Nigeria NGA Low 268.2 213.4 15.9 3.2% 

Indonesia IDN High 236.1 196.5 25.3 5.2% 

China CHN High 84.8 68.5 50.6 10.3% 

Brazil BRA High 87.0 53.7 5.2 1.1% 

Ethiopia* ETH Low 39.6 35.3 1.8 0.4% 

Japan JPN Very High 20.4 26.7 1.7 0.3% 

United States of America USA Very High 14.2 17.3 2.9 0.6% 
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Russian Federation RUS Very High 2.3 2.0 0.1 0.0% 

Rest of the world    103.1 104.1 137.0 27.9% 
* The low impact per employee is linked to the high altitude (with cooler climate) of most of this country  

Occupational heat exposure leads to another aspect of social and health inequity: it is the difference between the 

impacts on the people in labouring jobs that require high physical intensity and those in office or service jobs with 

less straining work. The impact of heat exposure on labour capacity increases significantly with the physical 

intensity of the work. 

 

Agricultural workers are the worst affected in many countries, with the burden often shifting to those in 

construction in higher income countries, such as the USA. Employment hours lost per worker are lower than the 

baseline in several countries.  While weather variability year on year can be expected, and 2022 data cannot be 

taken as an estimate of trends, the reduction in the agricultural workforce, mainly in favour of the service industry, 

is the main driver of long-term static or negative work loss trends in a number of countries. 

The global distribution of work hours lost (WHL) in the four workforce sectors is shown in Figure 17. Agriculture 

dominates but stays largely constant due to reductions of the agricultural workforce in many low- and middle-

income countries. The impact of rising heat is increasing the fastest in construction and other sectors (mainly in 

the service industry). 

Because of its definition, this indicator is influenced by the changes in population numbers and the distribution of 

the workforce within countries as well as climate change. WLF (work loss factor) is defined as the fraction of 

work hours lost for one worker at a specific metabolic rate, and thus describes work capacity loss due to heat 

independently from population and employment statistics. Figure 18 shows global WLF trends attributable to 

climate alone. In addition, this chart includes loss factor trends when an agricultural worker (400W metabolic 

rate) is exposed to the sun. The WLF rate doubling when solar radiation is included is an illustration of how 

disproportionate an increase by a few degrees of WBGT (solar uplift outlined above, typically between 1 and 2.5 

degrees) affects human work capacity. 
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Figure 17. Global potential work hours lost (billions) due to heat by employment sector, 1990–2022. 
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Figure 18. Work hours lost (% of annual hours) depending on physical work intensity, global means, 1990–

2022. 
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Figure 19: Historical and projected work capacity loss under two Socioeconomic Pathways (126 and 370).  

All working conditions in the shade unless indicated otherwise. 

 

Numbers of outdoor workers 

Indicator authors 

Dr Natalie C. Momen, Dr Frank Pega 

Methods  

The World Health Organization (WHO) and the International Labour Organization (ILO) produce the WHO/ILO 

Joint Estimates of the Work-related Burden of Disease and Injury (WHO/ILO Joint Estimates).25–28 These are the 

United Nations’ official occupational burden of disease estimates, and the first such interagency estimates of their 

Specialized Agencies responsible for health and labour. The estimates are produced at the levels of the world, 

WHO region and country/area, and disaggregated by sex and age group, enabling health inequalities analysis 

between and within countries.29  

A new set of WHO/ILO Joint Estimates has been produced of the proportion of the population who are 

occupationally exposed to solar ultraviolet radiation (or sunlight) for 195 countries/areas and the years 2000, 2010 

and 2019.30 WHO and the ILO, supported by the WHO Technical Advisory Group on Occupational Burden of 

Disease Estimation,31 have estimated this exposure by proxy of occupation with outdoor work.30 A job-exposure 

matrix was produced by occupational epidemiologists at WHO and labour statisticians and occupational 

hygienists at ILO, systematically classifying the 436 occupation unit group codes of the International Standard 

Classification of Occupations 2008 (ISCO-08)32 at the four-digit level into occupations with outdoor work 

(assigned to the exposure category of “any (or high) occupational exposure to solar ultraviolet radiation”, or 

outdoor worker) versus those without outdoor work (assigned to “no (or low) occupational exposure to solar 

ultraviolet radiation”, or indoor worker). ISCO-08 codes were cross-walked to the International Standard 

Classification of Occupations 1988 codes,33 using the official, standard cross-walking tables provided in the 
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ISCO-08 handbook.  This matrix of occupations classified as outdoor workers provides the basis for assignment 

to occupational exposure to solar ultraviolet radiation (see annex 1 in Pega et al 202330). 

The input data for these WHO/ILO Joint Estimates were 166 million observations from 763 surveys for 96 

countries/areas collected between 01 January 1996 and 31 December 2021 (for a list of the included surveys by 

country/area and year see annex 1 in Pega et al 202330). All these surveys were official labour force surveys 

conducted by national or area-level statistical offices. Data from at least one survey are available for 49.2% of all 

countries/areas globally (Table 6). One-third (35.9%) of the global population of working age (≥15 years) in 2019 

are covered with data from at least one survey. In each WHO region, at least 38.0% of countries/areas are covered 

by one or more surveys (Table 6). At least 30.7% of regional populations are covered, with the only exception 

being that data are available for just 6.0% of the Western Pacific population. 

Table 6: Coverage of surveys and countries/areas in the WHO/ILO Joint Estimates of occupational 

exposure to solar ultraviolet radiation. Sourced from Pega et al 202330. The programmatic allocation of the 

countries/areas to the WHO regions followed the WHO Coronavirus (COVID-19) Dashboard.34 

 WHO region World 

African 

Region 

Region of 

the 

Americas 

Eastern 

Mediter-

ranean 

Region 

European 

Region 

South-

East Asia 

Region 

Western 

Pacific 

Region 

Number of 

countries/areas  

47 35 22 53 11 27 195 

Surveys (N) 69 168 41 391 49 45 763 

Countries/areas 

with ≥1 survey 

(N) 

(% of countries) 

18 

(38.0%) 

15 

(42.9%) 

9 

(40.9%) 

33 

(62.3%) 

8 

(72.7%) 

13 

(48.1%) 

96 

(49.2%) 

 

The proportion of the working-age population with prevalent occupational exposure to solar ultraviolet radiation 

was estimated,30 using standard multilevel models,35–37 applied in previous WHO27,35–37 and WHO/ILO27 

estimations. This established statistical method is used by WHO to produce Sustainable Development Goal 

indicators (e.g., Indicator 3.9.1 “Mortality rate attributed to household and ambient air pollution”)38 and has 

therefore passed the approval of the United Nations Statistical Commission. 

Based on these WHO/ILO Joint Estimates of the proportion of the population occupationally exposed to solar 

ultraviolet radiation for the years 2000, 2010, and 2019 (point prevalence sourced from annex 1 in Pega et al. 

2023),30 the percentage of the working-age population who were outdoor workers was estimated for the year 2022, 

assuming a linear trend. These outdoor worker estimates were produced for the world, the six WHO regions and 

seven Lancet Countdown regions, and 195 countries/areas (Table 7). They were also produced disaggregated by 

sex (three categories: females and males; females; males) and age group (≥15 years, and 17 categories of five-

year age groups: 15–19, 20–24, ..., 90–94, ≥95 years). To estimate the total number of this exposed worker 

population, for each cohort defined by country (or region or global), sex and age group, its percentage of outdoor 

workers was multiplied with its total population for the year 2022. These total population numbers were sourced 

from the official projections of the United Nations Population Division.39 Indicators for occupational exposure to 

climatic risk factors that are disaggregated by socioeconomic characteristics are a priority for workers’ health data 

and monitoring at the global, regional and national levels, because they enable tracking of the social and climatic 

determinants of health and health equity among populations of workers.40  

Table 7: Countries/areas covered by the indicator by WHO region. The programmatic allocation of the 

countries/areas to the WHO regions followed the WHO Coronavirus (COVID-19) Dashboard.34  

WHO region 

(Number of 

countries/areas) 

Country or area 

African Region 

(47) 

 

Algeria; Angola; Benin; Botswana; Burkina Faso; Burundi; Cabo Verde; Cameroon; 

Central African Republic; Chad; Comoros; Congo; Côte d’Ivoire; Democratic Republic 

of the Congo; Equatorial Guinea; Eritrea; Eswatini; Ethiopia; Gabon; Gambia; Ghana; 

Guinea; Guinea-Bissau; Kenya; Lesotho; Liberia; Madagascar; Malawi; Mali; 
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 Mauritania; Mauritius; Mozambique; Namibia; Niger; Nigeria; Rwanda; Sao Tome and 

Principe; Senegal; Seychelles; Sierra Leone; South Africa; South Sudan; Togo; Uganda; 

United Republic of Tanzania; Zambia; and Zimbabwe 

Region of the 

Americas (35) 

Antigua and Barbuda; Argentina; Bahamas; Barbados; Belize; Bolivia (Plurinational 

State of); Brazil; Canada; Chile; Colombia; Costa Rica; Cuba; Dominica; Dominican 

Republic; Ecuador; El Salvador; Grenada; Guatemala; Guyana; Haiti; Honduras; 

Jamaica; Mexico; Nicaragua; Panama; Paraguay; Peru; Saint Kitts and Nevis; Saint 

Lucia; Saint Vincent and the Grenadines; Suriname; Trinidad and Tobago; United States 

of America; Uruguay; and Venezuela (Bolivarian Republic of) 

Eastern 

Mediterranean 

Region (22) 

Afghanistan; Bahrain; Djibouti; Egypt; Iran (Islamic Republic of); Iraq; Jordan; Kuwait; 

Lebanon; Libya; Morocco; occupied Palestinian territory, including east Jerusalem; 

Oman; Pakistan; Qatar; Saudi Arabia; Somalia; Sudan; Syrian Arab Republic; Tunisia; 

United Arab Emirates; and Yemen 

European Region 

(53) 

Albania; Andorra; Armenia; Austria; Azerbaijan; Belarus; Belgium; Bosnia and 

Herzegovina; Bulgaria; Croatia; Cyprus; Czechia; Denmark; Estonia; Finland; France; 

Georgia; Germany; Greece; Hungary; Iceland; Ireland; Israel; Italy; Kazakhstan; 

Kyrgyzstan; Latvia; Lithuania; Luxembourg; Malta; Monaco; Montenegro; Netherlands; 

North Macedonia; Norway; Poland; Portugal; Republic of Moldova; Romania; Russian 

Federation; San Marino; Serbia; Slovakia; Slovenia; Spain; Sweden; Switzerland; 

Tajikistan; Türkiye; Turkmenistan; Ukraine; United Kingdom; and Uzbekistan 

South-East Asia 

Region (11) 

Bangladesh; Bhutan; Democratic People’s Republic of Korea; India; Indonesia; 

Maldives; Myanmar; Nepal; Sri Lanka; Thailand; and Timor-Leste 

Western Pacific 

Region (27) 

Australia; Brunei Darussalam; Cambodia; China; Cook Islands; Fiji; Japan; Kiribati; 

Lao People’s Democratic Republic; Malaysia; Marshall Islands; Micronesia (Federated 

States of); Mongolia; Nauru; New Zealand; Niue; Palau; Papua New Guinea; 

Philippines; Republic of Korea; Samoa; Singapore; Solomon Islands; Tonga; Tuvalu; 

Vanuatu; and Viet Nam 

 

Data  

1. WHO/ILO Joint Estimates of the population exposed to solar ultraviolet radiation at the workplace, sourced 

from Pega et al 2023.30  

2. United Nations projections under the medium scenario of the total number of the population, sourced from 

the 2022 Revision of the World Population Prospects.39 

Caveats  

The estimates of the number and percentage of outdoor workers were produced based on the assumption of a 

linear trend in these variables over time. This is a common assumption made across many exposure estimations, 

including by WHO and ILO for estimating diverse occupational risk factor exposures.27,30  

The estimates cover workers in the informal economy for regions, countries and areas, where national or area-

level statistical offices have collected occupation data on these workers in the Labour Force Surveys that were 

used as input data for the WHO/ILO Joint Estimates of the proportion of the population occupationally exposed 

to solar ultraviolet radiation. Unpaid work is not captured. 

The coronavirus (COVID-19) pandemic has changed and continues to change occupations and their work tasks, 

including those performed outdoors. The indicator was produced using data collected in labour force surveys up 

until and including the year 2021. While these data may have captured some of the labour force changes that may 

have occurred for occupations regarding outdoor work, several labour force surveys may have been interrupted in 

collection or processing during the pandemic (e.g., during lockdowns). Future estimations will show if changes 

in the number or the percentage of outdoor workers occurred over the short or longer term. 

Future form of the indicator 



34 

 

The indicator could be further developed to capture the number and percentage of outdoor workers who are 

occupationally exposed to specific climatic risk factors (e.g., heat) above a threshold defined by one or both of 

exposure intensity and exposure period (e.g., occupational exposure limit). This should result in an indicator like 

the existing Lancet Countdown Indicator 1.1.1 “Exposure to warming” but singling out the particularly 

vulnerable outdoor workers. Additionally, the indicator could also be further advanced through the geocoding of 

the outdoor worker numbers and percentages at subnational levels, such as local authority or city.  Further 

disaggregation could also be added, including rural-urban area, socio-economic status, and migrant status. 

Additional analysis 

Globally in 2022, an estimated total of 1.6 billion people of working age were outdoor workers. In relative 

terms, approximately 26.4% of working-age people worked outdoors. However, there are several differences 

between WHO regions, countries, sexes, and age groups in both the number and percentage of outdoor workers. 

By WHO region, in absolute terms, the largest number of outdoor workers of working age resided in the South-

East Asia Region (0.5 billion) and the Western Pacific Region (0.4 billion) (Figure 20). In relative terms 

however, the WHO regions with the largest percentage of the population working outdoors were the African 

Region (32.1%) and the South-East Asia Region (29.8%) (Figure 20). The number and proportion of outdoor 

workers by country/area are presented in Figure 21 and Figure 22, respectively. 

 

Figure 20: Number and percentage of outdoor workers by WHO region, population of working age (≥15 

years), 195 countries/areas, 2022 (WHO estimates). Legend: AFR African Region; AMR Region of the 

Americas; EMR Eastern Mediterranean Region; EUR European Region; SEAR South-East Asia Region; 

WPR Western Pacific Region. 

Figure 21: Number of outdoor workers (in billions), population of working age (≥15 years), 195 

countries/areas, 2022 (WHO estimates). 
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Figure 22: Percentage of outdoor workers, population of working age (≥15 years), 195 countries/areas, 2022 

(WHO estimates). 

 

There are large differences in the outdoor workers indicator by sex. Globally in 2022, among every four outdoor 

workers, three are estimated to be males (1.1 billion), and one is estimated to be female (0.4 billion). Similarly, 

38.4% of all working-age males globally are outdoor workers, compared with only 14.6% of the working-age 

population of females. There are absolute and relative differences between WHO regions in their numbers and 

percentages of females compared with males who are outdoor workers (Figure 23, Figure 24). For the number of 

outdoor workers, the South-East Asia and the Western Pacific Regions have the largest absolute differences 

between females and males, whereas the Eastern Mediterranean Region and the Region of the Americas have the 

largest relative differences by sex (Figure 23). For the percentage of outdoor workers, the Eastern Mediterranean 

Region and the Region of the Americas have the largest absolute and relative sex differences (Figure 24). Of note, 

relative between-sexes differences in the number and proportion of outdoor workers are by far lowest within the 

African Region. This more equal distribution by sex is driven by the higher percentage of females working 

outdoors in this WHO region, compared with in the other WHO regions, rather than relatively lower percentages 

of male outdoor workers in this region, meaning both sexes are equally exposed at relatively high levels (Figure 

23, Figure 24). However, males consistently have substantially larger numbers and percentages of outdoor 

workers than females in all regions. 
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Figure 23: Number of outdoor workers by WHO region and by sex, population of working age (≥15 years), 

195 countries/areas, 2022 (WHO estimates). Legend: AFR African Region; AMR Region of the Americas; 

EMR Eastern Mediterranean Region; EUR European Region; SEAR South-East Asia Region; WPR 

Western Pacific Region. 

 

 

Figure 24: Percentage of outdoor workers by WHO region and by sex, working-age population (≥15 years), 

195 countries/areas, 2022 (WHO estimates). Legend: AFR African Region; AMR Region of the Americas; 
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EMR Eastern Mediterranean Region; EUR European Region; SEAR South-East Asia Region; WPR 

Western Pacific Region. 

There are also substantial age group differences in outdoor worker numbers and percentages. Both globally and 

within all WHO regions, age groups in early and middle adulthood comprise the largest numbers and percentages 

of outdoor workers (Figure 25, Figure 26). 

 

Figure 25: Number of outdoor workers by WHO region and by age group, working-age population (≥15 

years), 195 countries/areas, 2022 (WHO estimates). Legend: AFR African Region; AMR Region of the 

Americas; EMR Eastern Mediterranean Region; EUR European Region; SEAR South-East Asia Region; 

WPR Western Pacific Region. 
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Figure 26: Percentage of outdoor workers by WHO region and by age group, working-age population (≥15 

years), 195 countries/area, 2022 (WHO estimates). Legend: AFR African Region; AMR Region of the 

Americas; EMR Eastern Mediterranean Region; EUR European Region; SEAR South-East Asia Region; 

WPR Western Pacific Region. 

Globally between the years 2000 and 2022, there were reductions in both the number of outdoor workers (-0.2 

billion) and the percentage of working-age people who worked outdoors (-15.3 percentage points).  

Change in the absolute number of outdoor differed by WHO region. The global reduction was primarily driven 

by the reduction observed in the Western Pacific Region (-0.3 billion) (Figure 27). The change in the number of 

outdoor workers by country/area is presented in Figure 28. The reduction in the number of outdoor workers in 

the People’s Republic of China (-0.3 billion) strongly drove the reductions globally and in the Western Pacific 

Region (Figure 28). The absolute number of outdoor workers increased in the Eastern Mediterranean Region by 

0.1 billion people and in the European Region, Region of the Americas, and African Region by <0.1 billion 

people. 

The change in the percentage of outdoor workers from the year 2000 to the year 2022 also differed between WHO 

regions. The largest reductions in the percentage points of people who worked outdoors were estimated for the 

Western Pacific Region by 31.8 percentage points, followed by the African Region by 23.9 percentage points 

(Figure 27). These regional trends were driven by the two most populous countries in these regions (Figure 27). 

The People’s Republic of China had an estimated 32.4 percentage point reduction in the proportion of people who 

were outdoor workers. Nigeria had the largest estimated reduction over the same period: -90.8 percentage points. 

The only regional increases were estimated for the European Region (4.0 percentage points) and the Eastern 

Mediterranean Region (0.4 percentage points) (Figure 27). Estimated changes in the percentages of outdoor 

workers varied substantively at the national level, with reductions and increases of differing sizes estimated for 

different countries (
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Figure 29). 

 

Figure 27: Change in the number and percentage of outdoor workers between the years 2000 and 2022 by 

WHO region, working-age population (≥15 years), 195 countries/area (WHO estimates). Legend: AFR 

African Region; AMR Region of the Americas; EMR Eastern Mediterranean Region; EUR European 

Region; SEAR South-East Asia Region; WPR Western Pacific Region. 
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Figure 28: Change in the number of outdoor workers between the years 2000 and 2022, working-age 

population (≥15 years), 195 countries/area (WHO estimates) 

 

Figure 29: Change in the percentage of outdoor workers between the years 2000 and 2022, working-age 

population (≥15 years), 195 countries/area (WHO estimates) 

 

Indicator 1.1.5: Heat-Related Mortality 

Attribution of human exposure to health-threatening temperatures 

Indicator authors 

Dr Andrew Pershing 

Methods  

The median, quantile, and model-based methods defined41 were used to develop a multi-method estimate of the 

likelihood of temperatures in the modern and counterfactual climates. For each approach, the year was divided 

into 24 overlapping periods of 31 days. The modern climate was defined based on the global mean temperature 

(GMT) from the sample year (HadCRUT 5 relative to 1850–1899). The counterfactual climate had GMT=0°.  
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Median method: The median method assumed climate change only affects the median, not the variance or shape 

of distribution of daily temperatures. For each period, the frequency of daily temperatures (T) were approximated 

by fitting a skew normal distribution (SNref (T)) to the data from the reference period 1991-2020. Linear regression 

was used on data from 1950-2020 to calculate 𝛽=the local climate sensitivity (change in median local temperature 

for a 1° change in GMT) The likelihood of T in a climate defined by GMT was then SNref (T-𝛽 (GMT-GMTref)) 

where GMTref is the GMT of the reference period.  

Quantile method: The quantile method allowed the shape of the distribution to change. For each period, the local 

climate sensitivity (𝛽q) was calculated for 21 evenly spaced quantiles q between 0·01 and 0·99. To create the 

distribution for GMT, the quantile distribution was shifted from the reference period by 𝛽q (GMT-GMTref). A 

least-squares procedure was used to find the skew normal parameters that approximate the shifted distribution. 

Model-based method: Twenty-four models from CMIP6 with forced (historical and either SSP3-7.0 or SSP5-8.5) 

and control runs were used. The models were debiased using42 relative to the ERA5 data from the reference period. 

For each model, the year when its global mean temperature first exceeded GMT was determined. A skewed normal 

distribution was fit for each period using the 31 years of data surrounding this year. This allowed computation of 

the modern likelihood. The counterfactual likelihood was computed from skew normal distribution fit to the 

control runs. 

Synthesis: Each method computation of Cmethod(T)=log2(Lmodern(T)/Lcounter(T)), where Lclimate is the likelihood of T 

in the specific climate using the prescribed method. All estimates were combined into a single value: 

𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑇) = [(𝐶𝑚𝑒𝑑𝑖𝑎𝑛 + 𝐶𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒)/2 + ∑
𝑚𝑜𝑑𝑒𝑙

𝐶𝑚𝑜𝑑𝑒𝑙/𝑁]/2 

where N is the number of models (usually 24). The cutoffs for attributable mortality days were Ccombined(T) = 1 

(implying a ratio of 2) for warm events, and Ccombined(T) = -1 for cool events. Note there were occasions where 

Cmethod(T) could not be computed. Median and quantile methods and 50% of the models were required to return 

a value to use the data at that location and time. 

Data  

Daily average temperatures from ERA5 3 were used to quantify location-specific minimum mortality 

temperatures (MMT), defined as the 83rd percentile temperature of all daily temperatures at a location over the 

period 1986–2005.  

The number of days in each year from 1997–2022 that were above this threshold were counted. The likelihoods 

of encountering each daily temperature in the climate of the corresponding year (termed the modern climate) 

and the likelihoods in a counterfactual climate with no anthropogenic warming were estimated using a multi-

method approach41 that historical conditions from ERA5 and 24 climate models from CMIP6 1 .  

Days where the temperature exceeded MMT and where the ratio of the modern to counterfactual likelihoods 

was two or higher were categorized (and counted) as attributable mortality days. An analogous process was used 

for temperatures colder than the 17th percentile. The likelihood ratio of less than 0·5 was used as evidence that 

climate change is making these temperatures less likely. Indices of human exposure were calculated using the 

population-weighted average of the days above MMT and the attributable mortality days. This was done 

globally and for individual countries. The averages from individual countries were aggregated to geographic and 

socio- economic regions. 

 

Caveats  

There are several limitations on the detection and attribution work that can be read in detail in the methodology 

described above.42 Many of the limitations from the Gilford et al methodology were addressed either 

mathematically or through updating the data used (such as transferring from using CMIP5 data to CMIP6 and 

moving to ERA5). 

This indicator only considers exposure to potentially stressful temperatures and does not consider the 

consequences of that exposure. Indicator 1.1.2 is currently focused on attributing the health impacts of heatwave 
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days. Considering these two indicators together provides a more comprehensive view of the impact of climate 

change on health impacts across the various routes of health burden. 

Future form of the indicator 

There are several possibilities going forward for this indicator. The first is that it can work with a temperature 

threshold, either an absolute temperature level (such as the freezing point) or a percentile-based threshold like 

the minimum mortality temperature. It can also be extended to quantify the impact of climate change over larger 

regions or longer time periods. In the future, the approach could be expanded to include other weather events 

with health impacts, including but not limited to fire weather days, drought-days, extreme weather days, etc. It 

could also be combined with more detailed analyses of the consequences of high or low temperatures, allowing 

to extend from exposure to impacts. 

Additional analysis 

 

 

Figure 30 Population-weighted exposure to days above the 83rd percentile (solid line). In a stable climate 

we would expect this value to close to 62 days (black line). The number of days of exposure to warm 

temperature that were made at least twice as likely by climate change is plotted as a dashed line.  

 

  Days above/below Attributable Days 

 Region 1998-

2002 

2018-

2022 

𝚫 2022 1998-

2002 

2018-

2022 

𝚫 2022 

warm SIDS 72.1 120.9 48.8 116.5 53.3 103.4 50.1 95.7 

Africa 67.5 99.1 31.6 94.7 43.3 79.6 36.3 73.9 

South and Central America 67.2 93.4 26.2 73.7 45.7 72.4 26.7 52.3 

Asia 65.2 89.0 23.8 89.1 19.6 47.8 28.2 46.8 

Northern America 64.9 80.0 15.1 81.0 8.0 28.0 20.0 32.8 

Europe 54.1 67.5 13.4 69.9 6.8 25.5 18.7 31.3 

Oceania 50.6 61.2 10.6 58.3 6.2 18.5 12.3 17.5 
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Figure 31 Population-weighted exposure aggregated to Lancet Countdown regions. For each region, the 

average days above are listed for the periods 1998-2002 and 2018-2022. The change between these periods 

and the exposure for 2022 were calculated, as were the number of these days attributable using 2x criteria. 

The regions were sorted based on the change in exposure to warm events. The maximum change and 2022 

values are highlighted.  

 

Heat-related mortality  

Indicator authors 

Dr Zhao Liu 

Methods  

The methodology for this indicator, which tracks the global total number and spatial pattern of heat-related 

mortality from 2000 to 2022, remains similar to that described in the 2022 report of the Lancet Countdown.15  

The heat-related excess mortality in one day E is expressed as 

𝐸 =  𝑦0 × 𝑃𝑜𝑝 × 𝐴𝐹       (1) 

where 𝑦
0
 is the non-injury mortality rate on that day, Pop is the population size and AF is the attributable fraction 

on that day. Because every day’s mortality rate is hard to obtain, 𝑦
0
 is computed as the yearly non-injury mortality 

rate from the Global Burden of Disease data, divided by 365.  

AF is calculated via the relative risk (RR) which represents the increase in the risk of mortality resulting from the 

temperature increase. RR is regressed as 𝑅𝑅 = 𝑒𝑥𝑝𝛽(𝑡−𝑂𝑇), so AF is calculated as 

𝐴𝐹 =
𝑅𝑅−1

𝑅𝑅
= 1 − 𝑒𝑥𝑝−𝛽(𝑡−𝑂𝑇)    (2) 

where t is the daily maximum temperature, β is the exposure-response factor and OT is optimum temperature, and 

both parameters were adopted from Honda et al. (2014).43  The method was applied to gridded daily temperature 

data from ECMWF ERA5 dataset, and gridded population data from NASA GPWv4 population dataset and 

ISIMIP Histsoc records, as with Indicator 1.1.1.18 As the indicator focuses on a population that is 65 years old or 

older, age-structure data from United Nation World Population Prospects was also used. Because the mortality 

rate data of 2020–2022 has not yet been released, and the real data were highly affected by Covid-19 affecting the 

accuracy of the results, 2019 data were used instead. 

The heat-related mortality was first calculated at grid level at 0.5° spatial resolution. Then it was accumulated to 

global level to produce a time-series analysis. 

The calculation of the counterfactual scenario kept the data temperature unchanged at the baseline period level, 

and calculated mortality changing all other variables. This enabled the calculate of the change in heat-related 

mortality that would have been expected due to population change only, without influence of temperature 

change.To estimate the effects of modelled climate projections on heat-related mortality data, the input data and 

methodology for this indicator to the CVM 2022 report22 was used. 

Data  

1. Climate data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis.23  

2. Population data from the NASA Socioeconomic Data and Applications Center (SEDAC) Gridded Population 

of the World (GPWv4) and The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Histsoc 

dataset.4,5  

3. Demographic data from the United Nation World Population Prospects (UN WPP).13  

4. Mortality rate and life expectancy data are from the Global Burden of Disease.44  

5. Future climate projections from ISIMIP 3b protocol.11 

Caveats  
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This indicator applies a unique exposure-response function across all locations and times. While its use has been 

demonstrated in different geographies, it does not capture local differences in the health impacts from heat 

exposure, which can be significant. Also, this analysis assumes exposure-response function is constant. It does 

not capture changes in response to heat exposure that might happen over time, as a result of acclimation and 

adaptation. Not capturing these changes could result in an over-estimation of heat-related deaths in later calendar 

years. Annual average mortality rates are used, rather than daily mortality rates (𝑦0). Given baseline mortality can 

be higher in colder months, this may lead to an overestimation of overall mortalities. Nonetheless, the trends of 

change in mortality due to heat exposure should still be conserved. 

Only the heat-related mortality of the 65-and-older population was calculated this time, but more work needs to 

be done to include working group people.  

Additional analysis 

The change in global heat-related mortality and years of life lost is presented in Figure 32. On a global scale, the 

change in the number of heat-related deaths per year in the 2020–2022 period is quite small, but still maintained 

an increasing trend since 2000. On a regional scale, however, the changes in the number of heat-related deaths in 

different regions still show certain characteristics. For LC groups, the increase in the number of deaths in Asia 

and Europe is still relatively significant, while Oceania, Central and South America and SIDS have a more 

pronounced decreasing trend (Table 8). For the different WHO regions, the decline in heat-related deaths was 

more pronounced in the Americas, while the other continents maintained a more stable increasing trend (Table 

9). For the different HDI regions, only the very high HDI country group decreased in heat-related mortality in 

2022 and 2021 compared to 2020, the rest of the groups’ death toll is both up and down in 2021 and 2022 compared 

with 2020 (Table 10). As to the change from 2000–2005 to 2017–2022, all groups under different grouping criteria 

show an increasing trend (Table 11, Table 12, Table 13). For instance, for the LC groups, there are three groups’ 

heat-related mortality increased over 100%, which are South and Central America, Africa, and SIDS, and Europe 

increased the least of 43%. The global average growth was 65%. 

 

 

Figure 32: Heat-related mortality from 2000 to 2022. 

 

Table 8: Change of heat-related mortality for the 65-and-older population between 2020 and 2022 for 

different LC groups. 

LC groups 2020 2021 2022 
Change in mortality 

(2021 to 2020) 

Change in mortality 

(2022 to 2020) 
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Africa    21,879     23,756     21,937              1,877                  59  

Asia   136,059    145,987    150,080              9,928            14,021  

Europe    94,652     96,279     99,926              1,627              5,275  

Northern America    25,150     23,502     25,365             -1,648                216  

Oceania      1,683       1,247          960               -436               -723  

SIDS      1,152          831          389               -320               -763  

South and Central 

America 
   21,641     16,239     10,696             -5,402           -10,945  

Global  302,215   307,839   309,354  5,624 7,139 

 

Table 9: Change of heat-related mortality for the 65-and-older population between 2020 and 2022 for 

different WHO regions. 

WHO regions 2020 2021 2022 
Change in mortality 

(2021 to 2020) 

Change in mortality 

(2022 to 2020) 

Africa    15,857     16,582     14,517                725             -1,340  

Americas    47,736     40,365     36,339             -7,372           -11,397  

Eastern 

Mediterranean 
   15,264     18,101     17,288              2,838              2,024  

Europe   102,887    106,370    107,559              3,483              4,672  

South-East Asia    34,196     32,651     37,581             -1,545              3,386  

Western Pacific    86,273     93,769     96,070              7,496              9,798  

 

Table 10: Change of heat-related mortality for the 65-and-older population between 2020 and 2022 for 

different HDI levels. 

HDI level 2020 2021 2022 
Change in mortality 

(2021 to 2020) 

Change in mortality 

(2022 to 2020) 

Very High   137,443    134,979    135,402             -2,463             -2,041  

High   109,446    118,402    113,761              8,956              4,315  

Medium    38,145     36,237     42,870             -1,908              4,725  

Low    16,001     16,722     16,430                721                430  

 

Table 11: Change of heat-related mortality between 2020 and 2022 for different LC groups. 

LC groups 
Average mortality of 

2000–2005 

Average mortality 

of 2017–2022 

Change from 2000–

2005 to 2017–2022  

Africa          10,299           21,514  109% 

Asia          87,648         150,411  72% 

Europe          68,863           98,188  43% 

Northern America          13,652           22,897  68% 

Oceania            1,135             1,802  59% 

SIDS               381                774  103% 

South and Central America            7,151           16,521  131% 

Total        189,129         312,106  65% 

 

Table 12: Change of heat-related mortality between 2017–2022 and 2000–2005 for different WHO regions. 

WHO regions 
Average mortality of 

2000–2005 

Average mortality 

of 2017–2022 

Change from 2000–

2005 to 2017–2022 
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Africa            7,572           15,197  101% 

Americas          21,078           40,031  90% 

Eastern Mediterranean            8,685           16,425  89% 

Europe          73,223         106,569  46% 

South-East Asia          26,355           41,853  59% 

Western Pacific          52,214           92,029  76% 

 

Table 13: Change of heat-related mortality between 2017–2022 and 2000–2005 for different HDI levels. 

HDI 

level 

Average mortality of 

2000–2005 

Average mortality 

of 2017–2022 

Change from 2000–

2005 to 2017–2022 

High          61,285         114,149  86% 

Low            9,071           15,816  74% 

Medium          27,839           44,803  61% 

Very 

High 
         90,135         136,000  51% 
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1.2: Health and Extreme Weather-related Events 

Indicator 1.2.1: Wildfires 

Indicator authors 

Dr Yun Hang, Prof Yang Liu, Qiao Zhu 

Methods  

This indicator has been updated and improved from the 2022 report of the Lancet Countdown by (a) extending 

the satellite-based wildfire population exposure estimate with cloud corrections, (b) applying a much more precise 

filtration of non-fire hot spots reported by MODIS, (c) revising the vertical distribution of the fire plume in SILAM 

model allowing for a more accurate representation of near-surface concentrations, and (d) introducing future fire 

and fire smoke projections by using a new Fire Forecasting Model as well as projecting the exposure to very high 

or extremely high wildfire danger till the end of this century. 

Wildfire 

The change in population exposure to wildfire is represented as the change in the average annual number of 

person-days exposed to wildfire in each country. Satellite-observed active fire spots were aggregated and spatially 

joined with gridded global population data from the NASA SEDAC GPW v4.11 dataset on a global 0.1° × 0.1° 

resolution grid. Grid cells with a population density ≥400 persons/km2 were excluded to remove urban heat 

sources unrelated to wildfires. Cloud cover information was incorporated into each grid cell of the satellite-

observed active fire data to address the issue of fire spot underestimation due to cloud obscuration. The mean 

annual number of person-days exposed to wildfire during the most recent five years (2018–2022) was compared 

with the baseline period of 2003–2007 (Figure 33). 

 

Figure 33: Population-weighted mean changes in very high and extremely high fire danger days in 2018–

2022 compared with 2001–2005. Large urban areas with population density ≥ 400 persons/km2 are 

excluded. 

The fire danger risk, represented in terms of the Fire Danger Index (FDI), tracks human exposure to days in the 

meteorological danger risk of wildfires. It accounts for air temperature, relative humidity, wind speed and drought 

effects to capture the risk of a fire starting, its rate of spread, its intensity, and its difficulty of suppression. The 

historical FDI data were provided by ECMWF ERA5 atmospheric reanalysis, FDI is a numeric rating with values 

1-6 representing very low, low, medium, high, very high and extreme fire danger risk, respectively. Daily FDI 

data were aggregated so as to obtain the yearly number of days of each fire danger risk level at every 0.25° x 0.25° 

grid cell. The changes in mean number of days exposed to very high or extremely high fire danger risk (defined 

as FDI ≥ 5) were collected for the most recently available period, 2018 to 2022, and compared with a baseline 

from 2001 to 2005. For projection analysis, FDI was determined by daily Fire Weather Index (FWI). Specifically, 

the Global ECMWF Fire Forecasting (GEFF) model was performed to calculate daily FWI values. The input data 

were daily gridded climate data at 0.5° × 0.5° resolution derived from the ISIMIP3b dataset, for five general 
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circulation models (GCMs) under SSP1-2.6 (i.e., low-emission scenario) and SSP3-7.0 (i.e., high-emission 

scenario), respectively. The modelling periods included 1995–2014 (baseline), 2021–2040 (near-term), 2041–

2060 (medium-term), and 2081–2100 (long-term). In the second step, the FWI values were categorized into six 

levels of FDIs by the European Forest Fire Information System. The changes in mean number of days exposed to 

very or extremely high wildfire risks (defined as FDI≥5) were collected for three projection periods (i.e., near-

term, medium-term, and long-term), compared with the baseline period. 

Data  

1. MODIS Fire Radiative Power (FRP) observations MOD14/MYD14 from the NASA Fire Information for 

Resource Management System (FIRMS).45 

2. Cloud cover data from the EarthEnv Global 1-km Cloud dataset.46,47 

3. Fire danger indices historical data produced by the Copernicus Emergency Management Service for the 

European Forest Fire Information System (EFFIS).48 

4. Population data from the NASA Socioeconomic Data and Applications Center (SEDAC) Gridded Population 

of the World (GPWv4) and from the Hybrid gridded demographic data for the world, 1950–2020 (1.0).49 

5. Gridded population data from SSP1 and SSP3 scenarios (for SSP1-2.6 and SSP3-7.0, respectively) from 

CIESIN data with a spatial resolution of 0.5° × 0.5.50 

Caveats  

There are two caveats. First, the fire danger index represents a potential fire risk calculated by meteorological 

parameters. It does not represent actual fire events. The actual fire events can also be influenced by anthropogenic 

factors, such as human-induced land use and land cover changes, industrial-scale fire suppression, and human 

induced ignition. The fire danger index does not account for the potential fertilizer effect of CO2 and the associated 

changes in vegetation and thus the fuel load of fire. Further, it does not consider potential changes in lightning 

ignitions, which can be affected by climate change, but the effect is highly uncertain.  

Second, in projection of fire danger index, the FWI calculation requires daily temperature, relative humidity, wind 

speed at 12:00 am local time and precipitation at 12:00 am local time accumulated over the previous 24 hours. 

Since the daily temperature, relative humidity, wind speed at 12:00 am local time are difficult to obtain for 

projection, they were replaced with the daily maximum temperature, minimum relative humidity, and maximum 

wind speed. To ensure consistency, the same input parameters were used to calculate FWI values for the baseline 

period. 

Future form of the indicator 

Active fire spots as obtained from MODIS represent raw fire information and do not differentiate between wildfire 

and prescribed burns. Furthermore, the spatial resolution of the indicator is 0.1° which may underestimate wildfire 

exposure and introduce a bias. To correct this, future improvements could consider increasing the indicator’s 

resolution to 0.01° using global 1-km datasets. As this is computational- and time-consuming, these improvements 

will be introduced in the 2024 report. The replacement of climate input data for fire danger index projection would 

increase the uncertainty of outcomes. Thus, a more reliable and accurate method will be developed to improve the 

input data for projection in the 2024 report. 

Additional analysis 

1.1 Wildfire risk indicator by HDI level, WHO region and Lancet Countdown region 

The population-weighted mean changes in extremely high and very high fire danger days in 2018–2022 relative 

to 2001–2005 for each HDI category, each WHO region or Lancet Countdown region are shown in the figures 

and tables below (Table 14, Table 15, Table 16, Figure 34, Figure 35, Figure 36). Low HDI countries and African 

countries appear to have the largest growth in climatological danger of wildfire. 
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Table 14: Population-weighted mean changes in very high or extremely high fire danger days in 2018–2022 

compared with 2001–2005 by HDI level. The number and percentage of countries with increased exposure 

by HDI level are calculated. Large urban areas with population density ≥400 persons/km2 are excluded. 

HDI level Population-weighted mean changes 

 Mean Change in Fire 

Danger Days  

Number (%) of 

Countries with Increased 

Fire Danger Days 

Low 3.2 21 (66%) 

Medium 3.1 23 (56%) 

High 3.0 25 (57%) 

Very High 1.4 41(67%) 

 

 

 

  
Figure 34: Population-weighted mean changes in very high or extremely high fire danger days in 2018–

2022 compared with 2001–2005 by HDI level. 

 

 

Table 15: Population-weighted mean changes in very high or extremely high fire danger days in 2018–2022 

compared with 2001–2005 by WHO region. The number and percentage of countries with increased 

exposure by WHO region are calculated. Large urban areas with population density ≥ 400 persons/km2 are 

excluded. 

WHO region Population-weighted mean changes 

Mean Change in 

Fire Danger Days  

Number (%) of Countries with 

Increased Fire Danger Days 

African 5.6 34 (72%) 

Americas 0.9 18 (46%) 

Eastern 

Mediterranean 

-2.1 9 (41%) 

European 4.7 44 (88%) 

South-East 

Asian 

-4.6 2 (20%) 

Western 

Pacific 

0.2 6 (25%) 
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Figure 35: Population-weighted mean changes in very high or extremely high fire danger days in 2018–

2022 compared with 2001–2005 by WHO region. 

 

 

Table 16: Population-weighted mean changes in very high or extremely high fire danger days in 2018–2022 

compared with 2001–2005 by Lancet Countdown region. The number and percentage of countries with 

increased exposure by Lancet Countdown region are calculated. Large urban areas with population density 

≥400 persons/km2 are excluded. 

Lancet 

Countdown 

region 

Population-weighted mean changes 

Mean Change 

in Fire Danger 

Days  

Number (%) of Countries 

with Increased Fire 

Danger Days 

Africa 5.5 35 (73%) 

Asia 1.2 19 (42%) 

Europe 1.6 34 (87%) 

Northern 

America 

3.5 2 (100%) 

Oceania 2.1 2 (100%) 

SIDS 0.7 11 (28%) 

South and 

Central 

America 

1.5 11 (61%) 
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Figure 36: Population-weighted mean changes in very high or extremely high fire danger days in 2018–

2022 compared with 2001–2005 by Lancet Countdown Region. 

 

 

1.2 Projected trend of wildfire risk indicator by Lancet Countdown region 

At regional level (defined by Lancet Countdown region), the largest increase of days exposed to very high or 

extremely high by the end of the century under the high-emission scenario is projected to occur in Asia (37days), 

followed by Africa (36 days) and South and Central America (20 days). While the increase in high wildfire risk 

days is projected to be much less under the low-emission scenario, with 19 days for Asia, 11 days for Africa and 

4 days for South and Central America. Figure 36 and Figure 37 indicate the most pronounced increasing “climate-

related hazard” trend was observed and projected in Africa. 
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Figure 37: Population-weighted mean changes in very high and extremely high fire danger days in the high-

emission and in the low-emission by Lancet Countdown region. The shaded areas represent the range 

between the maximum and minimum values obtained using the 5 GCM. 

 

1.3 Satellite-based wildfire exposure indicator 

The change in the annual mean number of person-days exposed to wildfire by Lancet Countdown (LC) region, 

WHO region, and HDI level in 2018–2022 compared with 2003–2007 are shown in Table 17. As for the LC and 

WHO regions, after correcting for global cloud cover, Africa appears to have the largest increase in wildfire 

exposure (+0.3 million persons). Moreover, 62% of Eastern Mediterranean countries experienced an increase in 

wildfire exposure. European, South-East Asia, Western Pacific, South and Central America appeared to have a 

decrease in wildfire exposure. Low HDI countries appeared to have the largest increase in wildfire exposure (+0.5 

million persons). 62.5% of low HDI and 50% of medium HDI countries experienced an increase in wildfire 

exposure. High and very high HDI countries appeared to have a decrease (-0.04 and -0.01 million persons) in 

wildfire exposure.  
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Table 17: The annual mean number of person-days exposed to wildfire by LC region (A), WHO region (B), 

and HDI level (C) in 2018–2022 compared with 2003–2007 (unit: 10,000 persons). The number and 

percentage of countries with increased exposure are calculated. Large urban areas with a population 

density ≥400 persons/km2 are excluded. 

A LC Region Change of Exposure 
Number (%) of Countries with 

Increased Exposure 

  South and Central America -44.6 7 (43.8%) 

  Africa 27.5 29 (61.7%) 

  Asia -23.6 19 (43.2%) 

  SIDS -0.8 15 (42.9%) 

  Oceania 2.6 1 (50.0%) 

  Europe -15.6 12 (29.3%) 

  Northern America 0.7 1 (50.0%) 

     

B WHO Region Change of Exposure 
Number (%) of Countries with 

Increased Exposure 

  Americas -22.0 15 (44.1%) 

  Africa 27.2 27 (57.5%) 

  South-East Asia -120.7 2 (20.0%) 

  Western Pacific -10.1 11 (47.8%) 

  Europe -13.1 16 (30.8%) 

  Eastern Mediterranean 22.7 13 (61.9%) 

     

C HDI Level Change of Exposure 
Number (%) of Countries with 

Increased Exposure 

  High -39.9 22 (44.9%) 

  Medium 5.3 21 (50.0%) 

  Low 48.2 20 (62.5%) 

  Very High -14.6 21 (32.8%) 

 

Wildfire smoke 

Indicator authors 

Dr Risto Hänninen, Dr Rostislav Kouznetsov, Prof Mikhail Sofiev 

The indicator shows personal exposure to fire-originated fine particles (PM2.5) at the global scale during the last 

20 years, 2003–2022, which correspond to the complete period available from MODIS instruments onboard Aqua 

and Terra satellites (Figure 39). The smoke dispersion is computed with resolution of 0.5°.51 The atmospheric 

emission of fire-originated fine particles is computed by the Integrated System for vegetation fires IS4FIRES,52–

55 which is interfaced to the System for Integrated modeLling of Atmospheric coMposition SILAM51,56,57. The 

input data for the computations are the active-fire retrievals of Fire Radiative Power (FRP) by MODIS instrument 
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onboard Aqua and Terra satellites.58 FRP serves as a proxy for estimating the amount of pollutants released by a 

fire to the atmosphere59 and, combined with meteorological parameters, is used to calculate the vertical profile of 

the smoke injection in the air.53,54 Subsequent transport, transformations, and removal from the atmosphere are 

computed by SILAM following the usual procedures of atmospheric composition modelling. The obtained hourly 

global distribution maps are aggregated over time and space, weighted upon necessity with the population density, 

thus providing the set of output parameters: gridded and country-integrated time-resolving individual and 

population exposure to fire-induced smoke. 

There are several peculiarities and improvements of the 2023 fire smoke indicator in comparison with its 2022 

version. MODIS active-fire retrievals include many hot spots not related to wildland fires: large-scale metallurgy 

plants, oil refineries, volcanoes, etc. Their removal is a strong challenge because such heat sources may appear 

and disappear randomly.60 Previous non-fire mask of IS4FIRES was developed in 201555 and needed an update, 

which has been implemented in the new dataset strongly reducing the non-fire related false positives. Vertical 

distribution of the smoke injection followed the same procedure as in the 2022 report53,54 but a small correction 

in its implementation slightly increased the near-surface concentrations, thus more accurately reflecting the 

distribution of smoke from small fires adjacent to the main burning area. The adjustment has led to ~10% increase 

of near-surface concentrations in the vicinity of the large fires. 

The Fire Forecasting Model, FFM, is based on a machine learning approach that relates the meteorological, land 

use, and geophysical variables to the fire energy released under similar conditions in the past. Assuming that this 

relation will be valid also in future, the fire activity and the corresponding exposure can be calculated for distant 

years (Figure 40). 

Data  

1. MODIS Fire Radiative Power (FRP) observations MOD14/MYD14 from the NASA Fire Information for 

Resource Management System (FIRMS).45 

2. Population data from the NASA Socioeconomic Data and Applications Center (SEDAC) Gridded Population 

of the World (GPWv4) and from the Hybrid gridded demographic data for the world, 1950-2020 (1.0).49 

3. Daily surface concentration of fire-related PM2.5 from the Finnish Meteorological Institute.51 

Caveats  

MODIS fire radiative power and other fire products constitute the longest homogeneous global fire time series. 

However, low-orbit retrievals are available at each specific place only a couple of times per day. As a result, the 

instrument misses the fire if the scene is obscured by clouds, or the fire is too small. This omission error probability 

depends on region and season varying from ~20–30% in Europe in summer up to 70% in some equatorial areas. 

The smallest fire that can be detected by MODIS at night in clear-sky conditions and nadir view is about 4 MW, 

but the detection limit is close to 40 MW at the edge of the observed swath during day.  

Corrected caveat. The non-fire hot spots issue has been largely reduced in the current indicator release and can 

be considered negligible. As seen from Figure 39, the new non-fire mask is much more efficient in removal 

industry-related hot spots: e.g., the region of Persian Gulf is no longer reported as a wildfire-prone area with heavy 

upward trend, certain reductions of the trend artifacts are visible in industrial regions of the US, Siberia, etc. This 

was a significant caveat of the 2022 indicator, eliminated in the current release. 

Future form of the indicator 

In 2022, both Aqua and Terra satellites exited their constellation orbits: the satellites no longer have fuel for 

correcting the orbits and maintain the equatorial crossing time with accuracy of two minutes. By October 2022, 

Terra has reached 15 minutes shift from its usual timing. Also, both satellites were lowered in their orbits from 

705 km, by about 7 km. Since fire intensity has a strong diurnal cycle and retrievals are sensitive to the observation 

geometry, starting from 2023, the MODIS data will no longer constitute a homogeneous fire dataset. Therefore, 

the wildfire indicator will be rebased to VIIRS and SLSTR instruments, which have been operational for a few 

years and provide similar variables, albeit with different features. Merging the new instruments into the existing 

time series and continuing the harmonized line will be a challenge for the forthcoming reports. 

Additional analysis 

Exposure by HDI grouping 
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When comparing the last five years (2018–2022) with first five years (2003–2007) one may notice that the biggest 

drop by 30% in personal fire-PM exposure has appeared in countries with high HDI, while the biggest increase 

of 34% can be seen in countries with very high HDI, strongly driven by exceptionally high concentrations in 

Russia in 2021, plus increases in USA and Canada (Figure 38). If considering the population exposure, the largest 

drop of 18% is still in high HDI countries, but the strongest increase of 55% appears in low HDI countries, 

followed by 44% increase in medium HDI countries, both driven by the strongly increasing population. 

 

Figure 38. Fine PM area-weighted concentration for countries with different Human Development Index. 

 

Exposure over Lancet Countdown (LC) and WHO regions. 

Regional analysis reveals the differences between the mean individual and population exposure in different 

regions (Figure 41). Small Island Development States (SIDS, LC region) experience the lowest mean individual 

and population exposure. The maximum individual exposure is experienced in Africa and South and Central 

Americas, episodically also in Oceania (largely depending on the fire intensity in Indonesia). The population 

exposure is additionally controlled by the population density; hence Asia and Africa show the highest levels. 

Year-to-year variations are the highest in Oceania and Europe, with some annual spikes exceeding the mean level 

by several times. The fire occurrence varies from year to year, but particularly large variations are in Oceania 

(driven by El-Niño and related droughts) and Europe, which has a comparatively low exposure on average but 

can experience high peaks if the fire occurrences coincide with wind that brings the plumes to densely populated 

areas. 

Trends (Figure 39 for gridded trends and Figure 42 for country-averaged ones) computed over the 20 years and 

with improved non-fire mask largely confirm the conclusions of the 2022 report, except for Middle East and 

Persian Gulf, where both exposure and its upwards trend were essentially zeroed. Four regions with upwards 

exposure are North America, Russia, India, and Pakistan, as well as Democratic Republic of Congo. Among those, 

the only statistically significant (p<0.05) trends were in India and Pakistan (the trends in North America and 

Russia was close to the significance threshold). Statistically significant negative trends were in equatorial Africa, 

China, Kazakhstan, Myanmar, and Vietnam, however the tendency of the exposure reduction, albeit not 
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statistically significant, were visible in many countries. This is related to too short time series of MODIS (albeit 

the longest homogeneous ones available) and to a very high variability of the fire occurrence. It is therefore 

necessary to obtain the longer time series by combining and homogenising observations from several satellites, 

and to make use of more sophisticated trend analysis procedures that would allow a more reliable trend assessment 

with existing data. 

 

 
 

Figure 39: Gridded mean personal exposure rate to fire-induced PM (upper panel) and its trends (lower 

panel), 2003–2022. Only statistically significant trends (p<0.05) are shown. 
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Figure 40: Individual exposure rate for MODIS period (satellite-retrieved fires, black curve) and for future 

scenarios SSP 3-70 (red curve) and SSP 1-26 (blue curve). The scenario exposure estimates are scaled (a 

factor of 2.25) to meet the global mean of the MODIS time period. 
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Figure 41: Mean individual (left column) and population (right column) exposure for the LC (upper row) 

and WHO (lower row) regions. 
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Figure 42 Country-averaged individual PM2.5 exposure (upper panel) and its trend (lower panel). 

Statistically significant trends (P<0.05) are shown via blue-red colours, where not significant ones are 

shown via violet-brown colours. 

 

 

Indicator 1.2.2: Drought 

Indicator authors 

Dr Marina Romanello 

Methods  

The data source for this indicator has been updated for the 2023 report. 

The drought indicator uses the 6-monthly Standard Precipitation Evapotranspiration Index (SPEI6)61 as a measure 

of the land surface affected by drought events. This index allows for both the intensity and the duration of droughts 

to be taken into account. It captures the influence of both altered precipitation patterns, and of potential 

evapotranspiration on drought severity. 

SPEI6 data were obtained from the SPEI Global Drought monitor. The Global Drought monitor uses mean 

temperature data from the NOAA NCEP CPC GHCN-CAMS gridded dataset62 and monthly precipitation data 

from the 'first guess' Global Precipitation Climatology Centre (GPCC).63 GCPC data, which have an original 

spatial resolution of 0.5º x 0.5°, are interpolated to the resolution of 1° x 1°. Potential evapotranspiration is 

calculated using the Thornthwaite equation.  

The SPEI Global Drought Monitor calculates SPEI values using constantly updated climate data at a global scale 

with a 1° x 1° spatial resolution and a monthly time resolution. SPEI time scales between 1 and 48 months are 

provided. For the indicator the 6-monthly SPEI value is used (SPEI6) and the calibration period is set to January 

1950 to December 2010. SPEI6 data for 1950-present were downloaded from the Global SPEI Database.  

Droughts were defined according to three severity levels using the SPEI thresholds indicated in Table 18, as 

defined by the Federal Office of Meteorology and Climatology MeteoSwiss.64 In order to detect excess (unusual) 

drought events, “excess severe drought events” were defined as yearly counts of months in drought for each grid 

cell which exceed two standard deviations above the mean of the yearly counts of months in drought for the 

baseline period of 1986–2005. The excess events were defined for each SPEI severity level of drought 

independently, and the percentage of land area exposed to excess drought events at the different severity levels 

was calculated.  

Table 18: Summary of drought severity thresholds as defined by the Federal Office of Meteorology and 

Climatology MeteoSwiss. 

SPEI value Description Frequency of event in respective month 

< -1.3 severe drought 1-2 x in 20 years (i.e., 10% if the time) 

< -1.6  extreme drought 1-2 x in 40 years (i.e., 5% of the time) 

< - 2 exceptional drought 1 x in 50 years or less (i.e., ≤2% of the time) 

 

Data  

1. SPEI6 data from the Global SPEI Database, SPEIbase (Consejo Superior de Investigaciones Cientificas).65  

Caveats  

A limitation of this indicator is that it only captures the impacts of climate change on meteorological drought but 

does not capture the impacts of climate change on hydrological or agricultural drought, which can have major 
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health impacts too. Moreover, it does not measure the direct relationship between a drought and the population 

living in, or depending on, drought-affected areas. It is not possible to do a population-based weighting because 

many people affected by a drought may not live in the area affected, e.g., in the case of droughts affecting 

agricultural areas (which are generally sparsely populated) with impacts on the food supply. It is therefore difficult 

to determine the trends in persons affected by drought from the trends of severe drought areas. 

Further work is required to link reported drought damages in societies to climatic indicators. This would require 

a better understanding of the exposure factors of populations. 

Future form of the indicator 

Further development of the indicator will focus on using a combination of indices that capture agricultural 

hydrological drought, and meteorological drought, and better capture the health implication of drought events.  

Additional analysis 

The percentage of global land area affected by extreme drought has been increasing since the early 1990s. A linear 

regression shows that, from 1978 to 2021, the percentage of global land area affected by at least 1 month of 

extreme drought has been increasing by 0.87% each year (p < 2x10-16, R2 =  0.827; Figure 43). The year 2022 saw 

12 months in extreme drought in the Southern Amazon region, Western Sahara, and Horn of Africa (Figure 44), 

all regions which have seen over 8 months more in extreme drought per year from 1951–1960 to 2013–2022. An 

increasing percentage of the global land area is affected by more extreme drought, with sharp increases in the 

global land area affected by severe, extreme, and exceptional drought events in any given month over the past 20 

years (Figure 45), and an increasing number of months in drought affecting the global land area (Figure 46). 

At a regional level, the WHO region that experienced the highest increase in the incidence of extreme drought is 

the Eastern Mediterranean region, followed by the African region (Figure 47A). Africa, a region in which millions 

are already grappling with food water insecurity, was the most affected continental region in 2013–2022, with 

64% of its total land area affected by at least one month in extreme drought. Africa was also the continental region 

which saw the biggest increase in the incidence of drought, with 55% more of its land area affected by extreme 

drought in 2013–2022 than in 1951–1960 (Figure 47B). 

Looking at HDI country groups, countries with low HDI saw the biggest increase in drought incidence from 1951–

1960 to 2013–2022, with an additional 46% of the total land area affected by at least one month in extreme drought 

in recent years (Figure 47C). 

 

 

Figure 43: Percentage of the global land area affected by at least 1 month in extreme drought (SPEI6 ≤ -

1.6). The dashed blue line represents the linear regression of the segment with the highest linear correlation, 
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marked as a continuous blue line (1978-2022). The linear regression has slope = 0.872, p < 2x10-16, R2 =  

0.827. 

 

 

Figure 44: Number of months affected by extreme drought in 2022. 

 

 

Figure 45: Percentage of the global land area affected by drought events per month, from 1950 to 2022. 

Severe drought is defined by a SPEI of ≤1.3; extreme drought is defined by a SPEI of ≤1·6 and exceptional 

drought is defined by a SPEI of ≤2.  
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Figure 46: Percentage of the global land area affected by 1, 3, 6 or 12 months of extreme drought (SPEI  

≤1·6) per year. 
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Figure 47: Total average percentage of the global land area affected by extreme drought in per year in 

1951–1960 (blue), 2013–2022 (red), and change in the percentage land area affected from 1951–1960 to 

2013–2022 (teal) by: (A) WHO region; (B) Lancet Countdown region; and (C) HDI country group.  
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Indicator 1.2.3: Extreme weather and Sentiment 

Indicator authors 

Dr Kelton Minor, Dr Nick Obradovich 

Methods  

The data source for this indicator has been updated for the 2023 report. 

The indicator is based on a dataset consisting of billions of social media posts, representing nearly all globally 

geo-localised tweets (within the daily volume limits of the full Twitter Firehose) from 2015–2022. The geo-tagged 

tweets constitute approximately two percent of all tweets, and thus may be somewhat limited in their 

generalisability due to opt-in geo-localisation. That said, consistent functional responses to meteorological 

variables have been uncovered across social media platforms, including massive samples of status posts from 

Facebook, Chinese Weibo (Twitter-style) posts, and Twitter geo-located data from multiple countries.66–69 There 

appears to be little reason to suspect that the Twitter data are substantially biased from the overall relationship 

between climatic variables and emotional expressions. The functional relationships are nearly identical across 

platform and location and the estimated effects of heat are consistent with those uncovered in a high frequency 

national survey study70.  

The analysis for this indicator followed the methodological approach employed in multiple peer-reviewed 

publications.66–68,71–73 Climate econometric methods were employed74,75 to track the causal relationship between 

observationally measured sentiment expressions and exposure to varying ambient heat and precipitation extremes. 

The social media data consisted of  more than 8.2 billion geolocated tweets collected via the Amazon Web 

Services servers from the Twitter Streaming API between 2015 and 2022. These tweets spanned the globe, with 

a median number of unique active daily users of approximately 900,000. Activity was highest in more populous 

and wealthier countries, though Twitter use continues to expand globally (Figure 48). 

 

Figure 48: Country-level count of geolocated tweets, 2015–2022. Data includes posts from over 190 

countries and ~44000 administrative-2 divisions (ex. counties). 

The positive and negative valence76 of each of the Twitter posts was classified using the Linguistic Inquiry Word 

Count (LIWC) sentiment classification tool77–79 across thirteen available languages: Dutch, English, French, 

German, Italian, Japanese, Mandarin, Portuguese, Romanian, Russian, Serbian, Spanish, and Ukrainian which 

provided broad geographic coverage for the sample. Table 19 presents the by-language breakdown in the 

distribution of tweets from the 2022 indicator. Tweets with a ‘lang’ field matching each respective language are 

classified using that language’s dictionary.  

Table 19: By-language breakdown in the distribution of collected tweets. 

Included language and LIWC dictionary % of total geolocated tweets in data 2015–2022 
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Dutch 0.51% 

English 65.25% 

French 1.94% 

German 0.51% 

Italian 0.84% 

Japanese 5.94% 

Mandarin 0.17% 

Portuguese 12.11% 

Romanian 0.07% 

Russian 1.15% 

Serbian 0.02% 

Spanish 11.44% 

Ukrainian 0.06% 

 

LIWC is one of the most highly validated psychometric sentiment classification tools and has been employed in 

multiple studies on the relationship between climatic variables and online emotional expressions.77,78,80–83 Further, 

the effects observed via the LIWC classifier have also been observed via the use of alternative classifiers in both 

the U.S.66 and Chinese68 context. 

To enable the analysis that underpins this indicator, geolocated social media posts were geo-spatiotemporally 

matched with daily 30km gridded ECMWF ERA5 reanalysis ambient 2m air temperature data,84 precipitation 

totals, and meteorological controls at the 2nd-administrative level (GADM version 3.6). This ECMWF product 

provides globally consistent spatial and temporal coverage. Daily 30km gridded meteorological data were 

employed from the ECMWF ERA5 reanalysis product from 2015 to 2022. Heatwave metrics were calculated 

employing the methods used by indicator 1.1.2. Further, measures of r99p extreme daily precipitation (>99th 

percentile precipitation for a given location during the recent historical record using the same 1986–2005 climate 

normal used in The Lancet Countdown’s heatwave definition), cloud cover, relative humidity, diurnal temperature 

range and wind speed were incorporated from the ERA5 data. The r99p “extremely wet day” threshold is an 

established climatological index for extreme precipitation events and has been widely used to track global 

increases in extreme precipitation over land in recent decades.85–88 To aggregate the meteorological variables, 

weather timeseries were extracted from the gridded ERA5 raster data at the second administrative division-

resolution for each day in the data. 

The primary spatial unit of analysis for the statistical investigation was the second administrative division-level 

(ex. county-level). The temporal unit of analysis was the calendar date, resulting in second-administrative-unit-

by-day-of-observation analyses. 

To aggregate the sentiment measures to this unit of analysis, procedures previously described were followed.66 

Namely, for both positive and negative sentiment, each tweet was coded as either zero if the tweet contained no 

matching sentiment terms or one if it contained terms that match the corresponding sentiment. A tweet can express 

both positive and negative sentiment, only one of the two, or neither. For each day in the data, the average positive 

sentiment and the average negative sentiment was calculated for each unique user on that day, multiplying by 100 

to produce a percentage. Users’ scores were then averaged within the same second-division administrative unit 

together to produce the daily administrative sentiment measures. These measures ranged between 0 and 100.  

Models drawn from climate econometrics were employed to estimate the effect of exposure to heatwaves on 

positive and negative sentiment; modelling the dependent variables as positive and negative sentiment, 

respectively, the primary independent variable an indicator of whether an administrative-unit-day was 

experiencing a heatwave. The model additionally included an indicator variable for whether a location was 

experiencing an extremely (>99th percentile) wet day, and controls for other meteorological conditions. To control 

for potentially confounding factors that may vary over time across different locations calendar-month-by-2nd-

administrative region fixed effects were included in the models. Calendar date (ex. “2019-11-01”, “2020-11-01”) 

fixed effects for each unique date of observation was also included to account for idiosyncratic day-specific effects 

and global trends in internet and social media use.69,75,89–92  

The multivariate fixed effects model estimated largely replicated that estimated in Baylis et al66 and is as follows: 

  

𝑌𝑗𝑚𝑡 =  𝛽𝐻𝐸𝐴𝑇𝑗𝑚𝑡 + 𝛿𝐻𝑃𝑅𝐶𝑃𝑗𝑚𝑡 +  h(𝜇) +  𝛾𝑡  +  𝜈𝑗𝑚 +  𝜖𝑗𝑚𝑡 
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Here j indexed 2nd-level administrative region units, m indexed unique calendar months, and t indexed unique 

calendar dates. 𝑌𝑗𝑚𝑡 represented the dependent variables of positive and negative sentiment rates, respectively, 

𝐻𝐸𝐴𝑇𝑗𝑚𝑡 represented the binary heatwave indicator, which equals one if the date is classified as a heatwave in 

location m and equals zero otherwise. 𝐻𝑃𝑅𝐶𝑃 represented the extreme precipitation indicator. 𝛽 was the main 

coefficient of interest, the effect of a heatwave on positive and negative sentiment rates in percentage points. 𝛿 

was the secondary coefficient of interest, the effect of an extreme precipitation event on sentiment 

rates, h(𝜇)represented the meteorological controls, which included 20 percentage point percentile-bin controls for 

the temperature observations (with the omitted category of the 40th-60th temperature percentile bin serving as the 

omitted reference category for 𝐻𝐸𝐴𝑇𝑗𝑚𝑡 ). h(𝜇) also included flexibly binned control variables for cloud cover 

percentages, relative humidity, and wind speed.  

  

Further, 𝛾
𝑡
 represented date-specific fixed effects that controlled for any idiosyncratic shocks in the data as well 

as factors that trended similarly over time across all locations.  𝜈𝑗𝑚indicated second-administrative-unit-by-

calendar-month fixed effects that controlled for any location-specific seasonal and secular trends that might 

confound inference. 𝜖𝑗𝑚𝑡 represented the error term. Based on methodology in Baylis et al.,66 errors on 

administrative-unit-by-month and date were clustered and the regressions by the number of unique twitter posts 

in each administrative-unit-day and estimated the model for each year within the data were weighted, giving a 𝛽 

for each year presented. 

  

Lastly, an exploratory subgroup analysis across human development groups by stratifying the global Twitter data 

according to the UN’s Human Development Index (HDI) was conducted. The data were grouped into “high 

development” countries (operationalized as “very high” and “high” HDI countries) and “developing” country 

contexts (“medium” and “low” HDI countries), following the HDI-defined classifications,93 and employed the 

same model specification as above on the two subgroups. Similar stratified subgroup analyses were conducted for 

each of the WHO geographic regions and Lancet Countdown regions (Appendix Figure X4).  

Data  

1. Climate data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis.94  

2. Geolocated tweets collected via the Twitter Streaming API. 

Caveats  

Although this indicator has many inferential strengths, particularly as compared to existing survey-based and 

surveillance-based methods, it is neither a perfect nor exhaustive measure of the subclinical mental health burden 

of heatwaves and weather extremes.  

Countries that did not have Twitter broadly available to the public—such as China—were underrepresented in the 

indicator, despite the addition of Mandarin tweets this year. Second, geo-tagged tweets constitute approximately 

two percent of all tweets and thus may be somewhat limited in their generalisability due to opt-in geo-localisation. 

However very similar effects have been consistently documented across social media platforms, including massive 

multi-country samples of status posts from Facebook, Chinese Weibo (Twitter-style) posts, and Twitter geo-

located data.66,68,73 There appears to be little reason to suspect that the Twitter data are substantially biased from 

the overall relationship between climatic variables and emotional expressions. The functional relationships are 

nearly identical across platform and location.  

Third, since higher income populations likely have greater access to adaptive amenities (air conditioning, etc.), 

the estimates produced by the identification strategy may be conservative (biased towards zero) for those 

disproportionately exposed to some of the hottest conditions in poorer socioeconomic contexts. However, a recent 

national analysis in China68 suggests similar functional response forms across socioeconomic contexts, with very 

similar magnitudes observed for extreme heat-related responses, suggesting that added income may only smooth 

the relationship to a more moderate degree, and primarily for cold temperatures rather than warm ones. 

Future form of the indicator 

Global internet use and social media connectivity are expected to continue to increase over the coming decade, 

likely further expanding the global reach and coverage of the sample. Whilst the focus of this current version of 

the indicator is on sentiment responses to heatwaves and precipitation extremes, future iterations can expand to 

cover expressed responses to additional climate-related environmental stressors, including floods, 

hurricanes/cyclones/typhoons, fires, and smoke. Mirroring the approach taken with heatwaves in the current 
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indicator, these extreme events can be registered using standard definitions, including those specified directly by 

The Lancet Countdown in future annual reports. 

Additional analysis 

From 2015–2022, both heatwaves and extreme precipitation days consistently worsened human sentiment, with 

the slopes of fitted trend lines indicating increasing effect sizes over the eight-year period for all outcomes 

(Figure 49). Over the past eight years, the impact of heatwaves in amplifying negative sentiment expression 

increased at a rate of an extra 0·23 percentage points per decade, while their impact in reducing positive sentiment 

is increasing by an additional 0·21 percentage points per decade. The impact of days with extreme precipitation 

in reducing positive sentiment rose by an extra 0·23 percentage points per decade, while their impact on negative 

sentiment remained nearly unchanged. The average effect of a heatwave in 2022 on reduced positive sentiment 

was 44% larger than the impact of losing an hour due to the spring daylight savings time transition (DST), whereas 

the effect of a heatwave on increased negative sentiment was 5·32 times the DST impact. 

Adopting the extreme event analysis approach introduced in the 2022 report, this year’s indicator assesses the 

sentiment impacts of specific extreme climate events that underwent attribution analyses by the Worldwide 

Weather Attribution initiative (Figure 50).95,96 For 2022, the impacts of both the April 2022 East South Africa 

Extreme Rainfall event and July 2022 UK Heatwave were examined, both which were found to have been made 

more likely due to human-induced climate change95,96. Analysing geolocated tweets that originated from these 

regions during these extremes shows that the East South Africa Extreme Rainfall event significantly and 

substantially amplified negative sentiment by 2·09 percentage points, the largest negative sentiment impact yet 

recorded by the indicator. This event also severely lowered the share of positive sentiment tweets by 1·63 

percentage points. The UK Heatwave significantly reduced the share of tweets expressing positive sentiment by 

1·94 percentage points, the largest reduction in positive sentiment registered thus far by this indicator. This same 

heatwave elevated negative sentiment by 0·17 percentage points – nearly twice the average impact of a heatwave 

observed between 2015-2022 – although this increase was not statistically significant.     

 

Figure 49: (A) Effect of heatwave exposure on positive (green) and negative (orange) sentiment expressions, 

derived from the textual expressions of over 8.2 billion Twitter posts. Intervals depict 95% CIs of the 

estimated average percentage point change in the share of sentiment expressions during days with 

heatwaves compared to control days without heatwaves in the same place, month, and year. Coloured lines 

depict the 2015-2022 fitted trends tracking the change in the impact of extreme weather on positive (green) 

and negative (orange) sentiments. Lines sloping away from the grey “zero” line indicate increasing impacts 

over time (B) Effect of exposure to extremely wet (>99th percentile daily precipitation) days on expressed 

sentiments compared to local daily average precipitation. Grey bars depict the geolocated Tweet count by 

year of record. 
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Figure 50: Estimated sentiment effects of the 2022 Eastern South Africa extreme rainfall event and July 

UK heatwave on the percentage of positive (green) and negative (orange) sentiment expressions on Twitter. 

For comparison, sentiment effect sizes are also shown for the impact of the spring daylight savings time 

change, average 2015–2022 extreme precipitation response, and average 2015–2022 heatwave impact. Solid 

bars without stripes indicate response estimates that were also statistically significant at the p <·05 level. 

 

 

 

Figure 51 shows the estimated sentiment responses for very high-high UN Human Development Index (HDI) 

countries, and medium-low HDI countries. Heatwaves increased negative sentiment twice as much in medium-

low HDI countries (0·16 percentage points) compared to very high-high HDI countries (0·08 percentage points), 

but only significantly reduced positive sentiment in very high-high HDI countries (-0·31 percentage points). 

Heatwaves only slightly reduced positive sentiment (-0·01 percentage points) in medium-low HDI countries, 

although the confidence interval contained zero.  

Extreme precipitation significantly reduced positive sentiment in both very high-high HDI countries (-0·20 

percentage points) and medium-low HDI countries (-0·17 percentage points). By contrast, extreme precipitation 

only significantly elevated online negative sentiment expressions in very high-high HDI countries (0·16 

percentage points), but not medium-low HDI countries (0·04 percentage points). See the appendix of the 2021 

report for additional analyses and discussion about differential responses across HDI contexts71.  
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Figure 51:  Average impacts of extreme heat and extreme precipitation exposure on positive and negative 

sentiment expressions by Human Development Index groups from 2015-2022. Bottom grey bars plot the  

This year’s indicator also features an investigation of the responses to extreme heat and precipitation across global 

geographic regions using the Lancet Countdown’s regional groupings (Figure 52). Responses for WHO regions 

are additionally reported as supplementary data. Lancet Countdown regional estimates indicate that heatwaves 

increased the share of negative sentiment Twitter posts for all regions except Europe during the 2015–2022 period, 

with statistically significant negative sentiment elevations observed in Africa and North America. In order of 

effect magnitude, heatwaves increased negative sentiment by 0·13 percentage points in Africa, by 0·10 percentage 

points in Oceania, by 0·09 percentage points in North America, by 0·06 percentage points in Asia, by 0·04 

percentage points in South Central America, and by 0·02 percentage points in SIDS (Small Island Developing 

States). Conversely, heatwaves were associated with a 0·06 percentage point reduction in negative sentiment in 

Europe, but this effect was not statistically significant.  

Heatwaves also reduced the percentage of tweets with positive sentiment expressions for all regions, with 

statistically significant positive sentiment attenuation evident in all regions except for Africa, SIDS, and Europe. 

In descending order of effect size, heatwaves reduced positive sentiment by 0·36 percentage points in South and 

Central America, by 0·23 percentage points in Asia, by 0·20 percentage points in Oceania, by 0·11 percentage 

points in North America, by 0·09 percentage points in Africa, by 0·03 percentage points in SIDS, and by 0·01 

percentage points in Europe.  

Extreme precipitation days increased negative sentiment for all regions except for South Central America, with 

statistically significant negative sentiment elevation evident in Asia, Oceania, SIDS, North America, and Europe. 

In order of effect size, extreme precipitation increased the share of tweets with negative sentiment by 0·49 

percentage points in Asia, 0·27 percentage points in Oceania, 0·17 percentage points in SIDS, 0·14 percentage 

points in North America, 0·14 percentage points in Europe, and by 0·03 percentage points in Africa. By contrast, 

extreme precipitation slightly reduced negative sentiment by 0·01 percentage points in South Central America, 

although this reduction was not statistically significant.  

Extremely wet days also reduced the share of tweets with positive sentiment expressions across all geographic 

regions, with statistically significant reductions detected in North America, Africa, South Central America, Asia, 

and Europe. In order of magnitude, extreme precipitation reduced positive sentiment by 0·26 percentage points in 

North America, 0·22 percentage points in Oceania, 0·21 percentage points in Africa, 0·15 percentage points in 

South and Central America, 0·14 percentage points in Asia, 0·13 percentage points in SIDS, and by 0·10 
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percentage points in Europe. While globally extensive, Twitter coverage is not equally distributed (Figure 48) 

limiting the precision of estimates in regions with sparse coverage.  

 

 

Figure 52: Effects of extreme weather on the shares of positive and negative sentiments of geolocated 

Twitter expressions from 2015–2022, stratified by LC geographic regions. (A, C) The estimated average 

effects of a heatwave day during the 2015–2022 observation period on negative sentiment (orange) and 

positive sentiment (green) responses for each region, ordered by impact magnitude. Intervals depict 95% 

CIs of the estimated average percentage point change in the share of sentiment expressions during days 

with extremes compared to the meteorological baseline for each location. (B, D) The estimated regional 

sentiment responses to extremely wet precipitation days.  

 

 

Indicator 1.3: Climate Suitability for Infectious Disease Transmission 

West Nile virus 

Indicator authors 

Julian Heidecke, Prof Joacim Rocklöv, Dr Marina Treskova  

Methods  

This is the first year this indicator has been included in a Lancet Countdown report. 

The global West Nile virus (WNV) indicator tracks the thermal suitability for the transmission of WNV and 

changes in its basic reproduction number driven by climate change. 
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WNV is a mosquito-transmitted pathogen that can cause severe disease with central nervous system involvement 

in birds, humans, and other mammals. As of today, there are no pharmaceutical prevention or treatment options 

for WNV infection in human hosts. WNV is transmitted primarily by the bite of infected mosquitoes that acquire 

the virus from infected birds.97 Mosquito vectors of WNV, mainly from the genus Culex (Cx.), are widely 

distributed, allowing WNV to occur almost globally. Over the past two decades, Europe has experienced an 

expansion of the geographical range and intensity of WNV transmission marked by unprecedented outbreaks in 

2010 and 2018. The 2018 outbreak was characterised by 2,083 reported locally acquired infections in humans 

representing a 7.2-fold increase compared to the previous year.98 In the USA, since the first invasion of WNV into 

the country in 1999, more than 51,000 human clinical cases have been reported, including over 2,300 deaths.99 

Due to various direct and indirect effects of environmental conditions on the WNV-vector-host nexus, climate 

change impacts WNV transmission in multifaceted ways.100 Ambient temperature has been recognized as one of 

the major drivers of WNV transmission in Europe and the USA.101–103 For other parts of the world (Central/South 

America, Africa, Asia, and Australia), the evidence is scarce, likely due to underreporting. It stands to reason, 

however, that global warming also affects WNV transmission patterns in these regions.104 

Spatial-temporal patterns of WNV epidemiology can be explored using mathematical models. Related literature 

includes mechanistic models approximating the temperature dependence of the basic reproduction number 𝑹𝟎, 

i.e., the expected number of secondary host infections arising from a single infected host in a completely 

susceptible population, or of related transmission metrics. Although these suitability metrics only consider specific 

aspects of WNV transmission, they are based on well-studied relationships and able to explain geographical and 

seasonal patterns of WNV transmission to a certain extent.101,105,106 The equation below represents a model for 

temperature dependence of the basic reproduction number. Here, the temperature (𝑻) dependent 𝑹𝟎 is modelled 

as a Ross-Macdonald type expression as follows:107 

𝑹𝟎(𝑻) =
𝒎(𝑻)𝒂(𝑻)𝟐𝒃𝒎(𝑻)𝒑(𝑻)𝒏(𝑻)𝒃𝒉

− 𝐥𝐧(𝒑(𝑻))𝒓𝒉

 

which includes the temperature dependent biting rate 𝒂(𝑻), the vector competence 𝒃𝒎(𝑻), daily mosquito survival 

probability 𝒑(𝑻) (given by 𝒆−𝝁𝑴(𝑻), where 𝝁𝑴(𝑻) is the mosquito mortality rate), the length of the extrinsic 

incubation period 𝒏(𝑻) (the inverse of the pathogen development rate), the mosquito to host ratio 𝒎(𝑻) =

𝑴(𝑻) 𝑵⁄ , as well as the host infection probability 𝒃𝒉, and host recovery rate 𝒓𝒉. Using laboratory data measured 

at constant temperatures, Shocket et al. applied Bayesian inference to fit temperature response functions for 

several vector-pathogen traits and vector-virus pairs.101 This indicator utilises the response functions derived for 

Cx. pipiens, Cx. tarsalis, and Cx. quinquefasciatus because they are well-studied key WNV vectors and were 

reported as having good data availability for most of their traits. Together, these species inhabit a vast geographical 

area globally.101 For this first iteration, the indicator uses the median function coefficients resulting from the fitting 

procedure by Shocket et al. to parametrize the temperature responses for each vector-pathogen trait (note: notation 

of parameters is changed from Shocket et al.) and thus for 𝑹𝟎(𝑻).101 

To account for the impact of temperature-dependent mosquito life history traits on mosquito abundance, a proxy 

of 𝑴(𝑻) was derived utilising the mosquito traits included in Shocket et al.101 To this end, a simplified version of 

the stage-structured mosquito population dynamics model by DiSerra et al. was considered (adapted to the traits 

studied by Shocket et al.).108 The corresponding differential equations read as follows: 

�̇� = 𝜷(𝑻)𝑴 − (𝟏 +
𝑱

𝑲
) 𝝁𝑱(𝑻)𝑱 − 𝜸(𝑻)𝑱 

�̇� = 𝝎𝜸(𝑻)𝑱 − 𝝁𝑴(𝑻)𝑴 

where 𝑱 denotes the juvenile aquatic phase of the mosquito life cycle (i.e., encompasses eggs, larvae, and pupae) 

and 𝑴 represents the adult female mosquito population. The incorporated temperature dependent parameters are 

defined as: 𝜷(𝑻) denotes the oviposition rate (eggs laid per female mosquito per day), 𝝁𝑱(𝑻) is the juvenile 

mortality rate (at low juvenile density), 𝜸(𝑻) denotes the mosquito development rate, and 𝝁𝑴(𝑻) is the adult 

mortality rate as before. In addition, the model includes the proportion of female mosquitoes at adult emergence 

(here assumed as 0.5), and a juvenile carrying capacity parameter 𝑲. To prevent unlimited population growth, the 

model assumes a density-dependent increase in mortality arising from competition in the juvenile stage similar as 

in the model by DiSerra et al.108 The juvenile mortality rate 𝝁𝑱(𝑻) was calibrated such that at low juvenile density 

(𝑱 ≈ 𝟎), the proportion of juveniles surviving to the adult stage, given by 𝜸(𝑻) (𝜸(𝑻) + 𝝁𝑱(𝑻))⁄ , corresponds 
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with the egg-to-adult survival probability 𝒑𝑬𝑨(𝑻) in Shocket et al.101 The population equilibrium was evaluated 

as a proxy for mosquito abundance in the 𝑹𝟎 model following the simplifying assumption that at the point of 

introduction of WNV the modelled populations are at demographic equilibrium (essentially assuming a static 

environment in accordance to the lab data measured at constant temperatures). The temperature-dependent adult 

population equilibrium is given by: 

𝑴(𝑻) = 𝑲
𝝎𝟐𝜷(𝑻)𝜸(𝑻)𝟐

𝝁𝑴(𝑻)𝟐𝝁𝑱(𝑻)
(𝟏 −

𝝁𝑴(𝑻)

𝝎𝜷(𝑻)𝒑𝑬𝑨(𝑻)
) 

with 𝑴(𝑻) = 𝟎 if the population reproduction number 𝝎𝜷(𝑻)𝒑𝑬𝑨(𝑻) 𝝁𝑴(𝑻)⁄  is less than or equal to one. The 

juvenile carrying capacity parameter 𝑲 depends on a multitude of factors such as the availability of mosquito 

breeding habitat (determined by land cover, precipitation patterns, and human water storing behaviour). By 

excluding 𝑲 from the expression of 𝑴(𝑻), a dimensionless proxy of relative mosquito abundance is derived that 

isolates the impact of temperature via the mosquito life-history traits. This allows us to consider these additional 

relationships when measuring thermal suitability for transmission on a global scale. 

Since the host recovery rate 𝒓𝒉, the host infection probability 𝒃𝒉, and the host density 𝑵, are not temperature 

dependent (and hard to estimate given the numerous host species involved in WNV transmission), they were 

removed from the formulation of 𝑹𝟎. All the remaining parameters are species-specific temperature dependent 

vector-pathogen traits. Due to the removal of host density, recovery rate, and host susceptibility, in addition to 

neglecting factors like mosquito host preference, mosquito habitat availability, host movements, and vector 

control efforts, the resulting relative 𝑹𝟎 cannot be interpreted as an absolute measure of secondary cases (i.e., the 

basic reproduction number) but as a relative measure of the transmission risk space with an upper and lower 

thermal limit for transmission and an optimum, all of which are mosquito species-specific. To emphasise the 

interpretation of the relative 𝑹𝟎 as a transmission suitability index, it was rescaled to a value ranging from zero to 

one by dividing by the value reached at optimal temperature. The strong and nonlinear relationships of the vector-

pathogen traits to temperature result in a unimodal response of 𝑹𝟎 to temperature with transmission potential 

peaking between 23°C and 26°C and thermal limits and optima for transmission varying between vector species. 

Relative 𝑹𝟎 was computed at 0.1x0.1° spatial resolution using the ERA5-Land temperature data.109–111 To account 

for the species-specific responses to temperature, the mosquito distribution maps in Shocket et al. were 

georeferenced and used to determine the distribution of each species.101 The combined global indicator was 

calculated by combining the vectors’ distribution ranges and applying each vectors’ 𝑹𝟎 in their respective range. 

In areas where Cx. pipiens and Cx. quinquefasciatus overlap in the Americas, Asia, and Australia, their relative 

𝑹𝟎 temperature responses were averaged. Since there is substantial introgression and hybridization between the 

species in these regions, it was assumed that the temperature response of the hybrid populations falls "in between" 

the responses of the two species. For the overlapping regions in Africa (where Cx. pipiens and Cx. 

quinquefasciatus do not hybridise and are widely found at different elevations) as well as the overlapping regions 

with Cx. tarsalis (which has different habitat type than the other two species), the maximum out of the relative 

𝑹𝟎’s was taken. This was based on the simplifying assumption that the species with the highest transmission 

suitability would dominate disease spread. The gridded 𝑹𝟎 were extracted and aggregated by Country, WHO 

regions, LC groupings, and human development index (HDI). 

Data  

1. Monthly temperature data from the European Centre for Medium-Range Weather Forecasts (ECMWF) 

ERA5-Land reanalysis.112  

2. Thermal response data: Data from Shocket et al. showing thermal response of vector-pathogen traits fed into 

a relative 𝑅0 model for specific WNV-mosquito species combinations.101 

3. Vector species distribution maps shown in Shocket et al.101 

Caveats  

Although the indicator considers three key WNV mosquito species that enable good spatial coverage, some 

regionally important species (e.g., Cx. modestus in Europe or Cx. annulirostris in Australia) are not included. 

Therefore, only the transmission suitability of the considered species is measured, and only in the regions where 

they are present (see, however, the additional analysis where the individual species’ relative 𝑹𝟎 were applied to 

the global temperature data). In addition, potential intraspecific differences between the thermal response of vector 
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populations from different areas were not accounted for. While global warming is the best documented climatic 

impact on WNV transmission, other changes in climatic conditions, such as altered precipitation patterns and 

more frequent droughts, are also affecting local conditions for WNV mosquitoes and transmission but have not 

yet been included in the indicator. The vector distribution in the indicator is based on the current knowledge of 

their distributions and does not track potential shifts due to climate change. Moreover, the indicator does not 

include WNV host aspects such as distribution, abundance, composition, and movement, which are also affected 

by climate change. Thus, the indicator can only be interpreted as a relative measure of transmission suitability 

isolating warming impacts on vector-pathogen traits, but it cannot be interpreted as a threshold parameter for 

outbreaks or an absolute measure of secondary infections such as the classical basic reproduction number. 

Therefore, the percentage change in the relative 𝑹𝟎 should not be confused with a specific change in the number 

of WNV cases or outbreaks, although it indicates whether the risk increases or decreases. Additionally, the 

indicator does not consider whether WNV is present in a certain area, such as the Americas before 1999. 

Nonetheless, measuring the climate suitability of WNV in these areas is still informative about the change in the 

risk of introduction and establishment of the virus, and it is thus still deemed informative of disease emergence. 

In its current version the indicator utilises monthly averaged temperature data. Temperature variations on finer 

temporal scales are not accounted for. 

Future form of the indicator 

Future versions of the indicator will seek to address the caveats listed above. In particular, the aim will be to 

improve the mosquito population approximation, potentially considering factors beyond temperature such as 

breeding habitat availability. A more complete description of the environmental conditions favourable for the 

WNV vectors could allow to track changes in modelled vector distributions, eliminating the necessity to include 

static distribution maps from the literature. The thermal response of vector-pathogen traits will be updated should 

additional data become available. Finer resolution temperature data will be considered, including the incorporation 

of within month and daily temperature fluctuations. Furthermore, work will be put towards estimating changes in 

the basic reproduction number in absolute values by incorporating avian host abundance estimates and trends. 

Additional analysis 

The results of the global (combined mosquito ranges) indicator and the breakdown by HDI country groups are 

shown in Figure 53. In addition to the global combined indicator, changes in thermal suitability as given by the 

individual species-specific 𝑹𝟎 were considered applying them to the global temperature data as well as restricting 

the calculations to species’ distribution (Figure 54). Thermal suitability for transmission by Cx. pipiens and Cx. 

tarsalis decreased on a global scale from 1951-1960 to 2013-2022. However, there was an increase by 7.1% for 

Cx. pipiens and 11.9% for Cx. tarsalis when restricting the calculations to the vectors’ distribution range, 

underlining the escalating impact of global warming on WNV risk in these areas. Having a higher thermal 

optimum, transmission suitability for Cx. quinquefasciatus increased both globally and in the vectors’ range, 

although the trend has been levelling off since the early 2000s. The combined indicator was further calculated by 

WHO regions and by LC groupings (Figure 55, Figure 56). The Eastern Mediterranean WHO region has 

experienced a decrease in thermal suitability for WNV transmission (-8.1%) from 1951-1960 to 2013-2022, while 

all other regions have experienced increases in the same period varying between regions: 3.2% for Africa, 7.3% 

for the Americas, 18.3% for Europe, 2.9% for South-East Asia, and 4.3% in the Western Pacific WHO region. 

Similar trends can be seen when considering LC groupings. Here, Oceania is the only group showing a decrease 

from 1951-1960 to 2013-2022 (-2.9%) while Europe (+36.3%) and Northern America (+14.4%) present the most 

notable percentage increase in WNV relative 𝑹𝟎. It should be noted that the high magnitude of percentage increase 

in these regions has to be interpreted with caution since these regions were also the ones having the lowest baseline 

relative 𝑹𝟎 values in the reference period (0.05 for Europe and 0.17 for Northern America). Nonetheless, the steep 

percentage change observed for Europe is in line with the expansion and increasing trend in the number of cases 

that has been observed in this region over the last two decades. Changes in the seasonality of the combined 

indicator and for each of the three mosquito species (restricted to distribution ranges) were additionally considered 

(Figure 57).  While relative 𝑹𝟎 exhibits a unimodal seasonality in the ranges of Cx. pipiens and Cx. tarsalis, 

peaking around July and August, transmission potential by Cx. quinquefasciatus shows two peaks within the year 

but stays somewhat stable over the year (mind the different scaling of the axes), in accordance with the more 

tropical distribution of this species. The combined indicator peaks around August. It should be noted that these 

values were calculated on the total mosquito ranges and seasonality is expected to differ on a regional level. 



74 

 

Overall, transmission suitability during peak months has increased over the years (Figure 57 shows the relative 

𝑹𝟎 over the year for every second year in the period 1950-2022 for better visibility). 

 

Figure 53: Percentage change in WNV relative  𝑹𝟎 in the period 1960-2022 compared to 1951-1960 for the 

global combined indicator as well as by HDI country group. 
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Figure 54: Percentage change in WNV relative 𝑹𝟎 in the period 1961-2022 compared to 1951-1960 for the 

species-specific 𝑹𝟎 of Cx. pipiens, Cx. tarsalis, and Cx. quinquefasciatus individually applied to the global 

temperature data as well as restricted to the species’ distribution ranges. 
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Figure 55: Percentage change in WNV relative 𝑹𝟎 in the period 1961-2022 compared to 1951-1960 by WHO 

region. 

 

 

 

Figure 56: Percentage change in WNV relative 𝑹𝟎 in the period 1961-2022 compared to 1951-1960 by LC 

groupings. 
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Figure 57: Change in seasonality of WNV relative 𝑹𝟎 in the period 1950-2022 for the global combined 

indicator as well as the species-specific 𝑹𝟎 of Cx. pipiens, Cx. tarsalis, and Cx. quinquefasciatus individually 

applied to the temperature data restricted to the species’ distribution ranges. The relative 𝑹𝟎 over the year 

for every second year is shown for better visibility. 

 

 

Dengue, Chikungunya and Zika  

Indicator authors 

Dr Maquins Odhiambo Sewe, Prof Joacim Rocklöv  

Methods  

The input data for this indicator have been extended for the 2023 report.  

Cases of dengue have doubled every decade since 1990, with 58.4 million (23.6 million–121.9 million) apparent 

cases in 2013, accounting for over 10,000 deaths and 1.14 million (0.73 million–1.98 million) disability-adjusted 

life-years.113 Beside global mobility, climate change has been suggested as one potential contributor to this 

increase in burden.114 Aedes aegypti and A. albopictus, the principal vectors of dengue, also carry other important 

emerging or re-emerging arboviruses, including Yellow Fever, Chikungunya, Mayaro, and Zika viruses, and are 

likely to be similarly responsive to climate change.  

𝑅0, i.e. the basic reproduction number, which is the expected number of secondary infections resulting from one 

single primary infected person case in a totally susceptible population ,was computed using the formula 𝑅0 =

𝑉𝑏ℎ/𝑟ℎ.115 The vectorial capacity (V), which express the average daily reproductive rate of subsequent cases in a 
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susceptible population resulting from one infected case, was computed using the formula  
𝑉 = 𝑚𝑎2𝑏𝑚𝑝𝑛/−𝑙𝑛𝑝 where 𝑎 is the average vector biting rate, 𝑏𝑚 𝑖𝑠 probability of vector infection and 

transmission of virus to its saliva, n is the extrinsic incubation period while 𝑝 is the daily survival probability. All 

these parameters are temperature dependent and are further described in the work by Rocklöv et al.115–117  

The ratio between number of mosquitoes to the number of humans, is central to V and the R0 value (m), but often 

it is left out or estimated in a simple way. Here a model is used to estimate mosquito populations of Aedes aegypti 

and Aedes albopictus separately. The original mosquito-population models provide results in terms of the number 

of individuals of Ae. aegypti per breeding site (X), or the number of Ae. albopictus per hectare (Y). In order to 

appropriately estimate m, i.e. mosquito population density per human population density (p), X was multiplied by 

f(p,a,c) = a ∗ g(p,c) where a equals to the number of breeding-sites per human, and Y by f(p,a/b,c) = a ∗ g(p,c)/b 

where b equals the average number of breeding sites per hectare. The function g(p,c) = p2/(c2 +p2) is an increasing 

sigmoidal function that equals the viability of domesticated mosquito-populations in relation to human population 

density. Accordingly, f(p,a,c) is the multiplicative factor m in V, which allowed to straightforwardly estimate 

correct values for a, a/b and c by fitting R0 to R0-data that was available for a subset of the spatiotemporal points.118  

Numerically V and abundance estimates was computed at 0.5°x0.5° spatial resolution based on ERA5-Land109 

data resampled from the 0.1°x0.1° original resolution. V and vector abundance were run for both Aedes aegypti 

and Aedes albopictus vectors. Gridded population from HYDE 3.2 (History Database of the Global Environment) 

were used in the computation of R0. For Dengue (albopictus) and Chikungunya, Aedes albopictus vector 

abundance estimates were used in the computation of m while for Dengue (aegypti) and Zika Aedes aegypti 

abundance estimates were used. Further annual length of transmission season (LTS) was computed by summing 

the number of months in a year when R0 was greater than 1 following the work by Colón-González et al.118 

The gridded R0 and LST for Dengue (Aedes aegypti), Dengue (Aedes albopictus), Chikungunya (Aedes 

albopictus) and Zika (Aedes aegypti) were extracted and averaged by Country, WHO regions and according to 

human development index (HDI).  

Data  

1. Monthly climate data (2m air temperature, total precipitation) from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) ERA5-Land reanalysis.110,111 

2. Future climate projections from ISIMIP 3b protocol.11 

Caveats  

Key caveats and limitations of the V model and its parameterisation are fully described in works by Liu-

Helmersson et al.119,120
 and Rocklöv et al.115 The predicted R0 should not be confused with actual dengue cases, 

although it is an indicator of the potential for outbreaks.116,117  

 

 

Malaria 

Indicator authors 

Martín Lotto Batista, Prof Rachel Lowe 

Methods 

Malaria is widely recognised as a climate-sensitive infectious disease due to the climate sensitivity observed in 

both the vector, Anopheles mosquitoes, and the Plasmodium parasites.121 Although there are five species within 

the Plasmodium genus, two of them are of major public health concern: Plasmodium vivax and Plasmodium 

falciparum, 122 with the latter being the dominant species around the world. 

Temperature, precipitation, and relative humidity are climate factors that influence the abundance and feeding 

cycle rate of Anopheles mosquitoes, which transmit the Plasmodium parasites that cause malaria. Temperature 

also drives the development rate of Plasmodium parasites within the mosquito vectors. Temperatures within the 

range 18°C to 32°C are considered most suitable for P. falciparum parasites, while P. vivax requires temperatures 
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between 14.5ºC and 33ºC. Below this lower limit the development of the parasite ceases while in high 

temperatures the survival of the mosquito is compromised.121,123 Additionally, relative humidity needs to be 

greater than 60% to allow mosquitoes to survive long enough to carry infectious parasites. Rainfall and availability 

of water bodies are necessary for adult mosquitoes to lay eggs and for larvae to survive.123 Evidence suggests that 

at least 80 mm of monthly rainfall is necessary for suitable transmission. 

Together with climatic conditions, the environment determines the spatial distribution of Anopheles mosquitoes, 

by providing breeding sites and optimal survival conditions.124,125 Moreover, Lyon et al., (2017) found a 

significant association between increasing low temperature in higher altitudes and the development of malaria 

parasites in Ethiopia.126 Increasing temperatures in the region are eroding the perceived barrier to malaria 

transmission, allowing more favourable conditions to begin climbing into densely populated highland areas. The 

malaria indicator focuses on determining global changes in the number of months per year suitable for 

transmission of the malaria parasites over time between high- and lowland areas according to different categories 

of the UNDP Human Development Index (Figure A1) 

 

Historical monitoring of malaria suitability (1951-2022) 

The length of the transmission season, measured as the number of months suitable for malaria transmission per 

year from 1951 to 2022 was calculated on grid with a resolution of 0.1° x 0.1º/ 9km x 9km. Climate suitability 

was based on empirically derived thresholds of precipitation, temperature, and relative humidity for Plasmodium 

falciparum and Plasmodium vivax. 

Monthly climate information between 1951 and 2022 was obtained from the ERA5-Land repository.127 Relative 

humidity in percentage was calculated using the August-Roche-Magnus equation, which derives this value by 

combining dew point temperature and temperature, using the formula below128 

𝑹𝑯 = 𝟏𝟎𝟎 ∗
𝐞𝐱𝐩 (

𝒂𝑻𝒅

𝒃 + 𝑻𝒅
)

𝐞𝐱𝐩 (
𝒂𝑻

𝒃 + 𝑻
)

 

Where a and b are the coefficients 17.625 and 243.04, respectively, and T and Td are temperature and dew point 

temperature in °C. 

Elevation data were extracted from the JISAO repository, University of Washington 

(http://research.jisao.washington.edu/data_sets/elevation/). 

Land cover classes from 2019 were extracted from the Copernicus Global Land Monitoring Service repository at 

100m resolution (https://land.copernicus.eu/pan-european/corine-land-cover) in tag image file format (.tif) and 

was assumed to be constant across the entire time series. Suitable land classes were determined according to the 

literature about the environmental requirements and limitations of different dominant vector species (DVS) of 

human malaria124,125,129 Namely, close, and open forests, herbaceous wetlands, cultivated and managed vegetation/ 

agriculture, and permanent water bodies, were considered as potentially suitable areas for settlement of Anopheles 

mosquito populations. 

Suitability for a particular month was defined as the coincidence of precipitation accumulation greater than 80 

mm, average temperature between 18°C and 32°C for P. falciparum, and 14.5ºC and 33ºC for P. vivax, and relative 

humidity greater than 60% 123,130. These combined values reflected the climatic limits for potential transmission 

of parasites. The number of months per year with suitable conditions were then stratified by elevation using a 

threshold of 1500 m.a.s.l. to differentiate low from highland areas (highlands >= 1500 m.a.s.l.). Averages by 

country, HDI category, and WHO and Lancet Countdown regions were computed, weighted by the amount of 

suitable land cover classes. 

Results were visualised using time series line plots (Figures A2 and A4), and maps and tables containing the 

change in the number of suitable months between the decades 1951-1960 and 2013-2022 (Tables A1 to A3 and 

Figure A5). 

Climate change projections (1995-2100) 



80 

 

The climatic limits for potential transmission of P. falciparum parasites described above were used for producing 

climate change projections in the context of scenarios SSP1-2.6 (sustainable future with low-emissions) and SSP3-

7 (future with significant inequalities and high-emissions). Daily climate variables were extracted from the 

ISIMIP3b simulation round and grouped by month. Mean number of months suitable for malaria transmission in 

the periods 2021-2040, 2041-2060, and 2081-2100 were compared to the baseline period 1995-2014. The median 

percentage change between periods was computed across GCMs and differences between models were 

incorporated as a measure of spread of the predictions. 

 

Data  

Historical monitoring of malaria suitability (1951-2022) 

Variable Source Frequency of 

update 

Spatial 

resolution 

Temporal 

range 

Monthly 2-meter dew point 

temperature 

ERA5-Land 

Monthly with a 3-

month delay relative 

to present 

0.1°/ 9 km Jan 1951 to 2022 
Monthly 2-meter temperature 

Monthly total precipitation 

Altitude JISAO - 0.5° - 

Land cover Copernicus 

Global Land 

Service 

Annually 100 m 2019 

 

Climate change projections (1995-2100) 

Variable Source Models Spatial resolution Temporal range 

Near surface air 

temperature 

ISIMIP3b 

GFDL-ESM4 

IPSL-CM6A-LR 

MPI-ESM1-2-HR 

MRI-ESM2-0 

UKESM1-0-LL 

0.5º 
Historical: 1995 – 2014 

Future: 2015 – 2100 
Precipitation 

Near surface relative 

humidity 

 

Caveats  

These results are based on climatic data, not malaria case data. The malaria suitability climate thresholds used are 

based on a consensus of the literature. In practice, the optimal and limiting conditions for transmission are 

dependent on the parasite and vector species.131 Control efforts might limit the impact of these climate changes 

on malaria or conversely, the climate suitability may either enhance or hamper control efforts.132 

The inclusion of land suitability assumes a constant distribution of land cover classes as reported in 2019. 

However, dynamics in malaria transmission are highly correlated to changes in land use patterns, such as 

deforestation and urbanization.129,133 Additionally, different Anopheles species have adapted to different types of 
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forests.129 This indicator assumes a strict relationship between forest type and suitability for vector development, 

hence omitting disease dynamics at lower scales. 

 

Additional analysis 

Historical monitoring of malaria suitability (1951-2022) 

 

Figure 58. Mean number of months suitable for malaria transmission between 1951 and 2022, weighted by 

the amount of land suitability for Anopheles mosquitoes. Stratification by HDI level and elevation 

(highlands above or equal to 1500 masl). Linear regression was used for trend estimation. 
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Figure 59. Mean number of months suitable for malaria transmission between 1951 and 2022, weighted by 

the amount of land suitability for Anopheles mosquitoes. Stratification by WHO region and elevation 

(highlands above or equal to 1500 masl). Linear regression was used for trend estimation. 

 

 

Figure 60. Mean number of months suitable for malaria transmission between 1951 and 2022, weighted by 

the amount of land suitability for Anopheles mosquitoes. Stratification by Lancet Countdown region and 

elevation (highlands above or equal to 1500 masl). Linear regression was used for trend estimation. 

 

HDI level 

P. falciparum 

 

P. vivax 

Highlands 

N months (%) 

Lowlands 

N months (%) 

Highlands 

N months (%) 

Lowlands 

N months (%) 

Low 0.6 (29.5%) -0.67 (-10.8%)  -0.54 (-9.84%)  -0.69 (-10.9%) 

Medium 0.39 (17%) 0.15 (2.77%)  0.24 (4.92%)  0.13 (2.33%) 

High 0.37 (33.6%) 0.21 (2.39%) 0.33 (11.7%)  0.17 (2.69%) 

Very high 0.01 (45.4%) 0.1 (16.5%) 0.03 (19.1%)  0.16 (15.6%) 

Table 20. Percentage change in median number of months suitable for malaria transmission between 1951-

1960 and 2013-2022 stratified by Human Development Index (HDI) and altitude (highlands above or equal 

to 1500 masl). 
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P. falciparum 

 

P. vivax 

Highlands 

N months (%) 

Lowlands 

N months (%) 

Highlands 

N months (%) 

Lowlands 

N months (%) 

                         

                           

                

    

    

    

    

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

   

   

 

 

 

 

 
 
 
 
  
 
 
 
 
  
 
  
 
 
 
  
  
  
  
 
 
  
  
 
  
 
 
  
  
 
  
  
 
  

  
  
 
 

                                      

                       



83 

 

Africa 0.63 (25.7%)  -0.44 (-7.25%)  -0.62 (-10.5%)  -0.47 (-7.56%)  

Americas 0.28 (48.8%)  0.12 (3.57%)  0.36 (19.4%)  0.21 (5.47%)  

Eastern Mediterranean 0.01 (3.95%)  -0.3 (-32.3%)  0.04 (10.2%)  -0.22 (-21.4%)  

Europe 0.02 (172%)  0.09 (48.9%)  0.19 (75.4%)  0.11 (17.2%)  

South-East Asia 0.27 (12.9%)  0.02 (0.32%)  0.32 (7.52%)  -0.03 (-0.52%)  

Western Pacific 0.26 (21.3%) 0.18 (5.16%)  0.01 (0.42%)  0.08 (2.02%)  

Table 21. Percentage change in median number of months suitable for malaria transmission between 1951-

1960 and 2013-2022 stratified by WHO region and altitude (highlands above or equal to 1500 masl). 
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Lancet Countdown  

Regions 

P. falciparum P. vivax 

Highlands 

N months (%) 

Lowlands 

N months (%) 

Highlands 

N months (%) 

Lowlands 

N months (%) 

Africa 0.61 (25.6%)  -0.47 (-7.87%) -0.61 (-10.6%) -0.49 (-8.12%) 

Asia 0.18 (17%) 0.13 (2.89%) 0.04 (1.69%) 0.11 (2.18%) 

Europe 0.01 (642%) 0.09 (49.6%) 0.16 (104%) 0.11 (18%) 

Northern America 0.001 (15.2%) 0.25 (42.1%) 0.001 (13.5%) 0.4 (37.9%) 

Oceania 0 (0%) 0.02 (1.59%) 0 (0%) 0.08 (5.74%) 

SIDS 1.03 (41.5%) 0.45 (5.15%) 0.73 (8.21%) 0.43 (4.92%) 

South and Central America 0.62 (48.9%) 0.02 (0.33%) 0.86 (21.4%) 0.01 (0.09%) 

Table 22. Percentage change in median number of months suitable for malaria transmission between 1951-

1960 and 2013-2022 stratified by Lancet Countdown group and altitude (highlands above or equal to 1500 

masl). 

 

HDI level 
P. falciparum P. vivax 

Highlands Lowlands Overall Highlands Lowlands Overall 

Low 26.9% 19.05% 25.1% 25.36% 21.66% 21.74% 

Medium 11.98% 10.29% 10.95% 13.53% 12.85% 13.11% 

High 9.99% 17.44% 14.31% 9.13% 13.48% 11.79% 

Very high 0.68% 9.51% 9.07% 4.07% 19.57% 18.39% 

Table 23. Percentage of areas unsuitable for malaria transmission in the period 1951-1960 that became 

suitable by the period 2013-2022, stratified by Human-Development Index (HDI) and altitude (highlands 

above or equal to 1500 masl). 

 

WHO Regions 
P. falciparum P. vivax 

Highlands Lowlands Overall Highlands Lowlands Overall 

Africa 40.6% 34.83% 36.32% 47.16% 35.62% 37.86% 

Americas 7.22% 8.86% 8.5% 5.91% 19.68% 17.37% 

Eastern Mediterranean 1.86% 3.57% 3.23% 2.24% 5.68% 4.98% 

Europe 1.63% 11.04% 10.8% 13.64% 20.93% 20.70% 

South-East Asia 4.72% 36.6% 9.56% 8.03% 33.95% 9.52% 

Western Pacific 4.54% 8.84% 7.79% 4.74% 9.73% 8.63% 
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Table 24. Percentage of areas unsuitable for malaria transmission in the period 1951-1960 that became 

suitable by the period 2013-2022, stratified by WHO region and altitude (highlands above or equal to 1500 

masl). 

 

Lancet Countdown  

Regions 

P. falciparum P. vivax 

Highlands Lowlands Overall Highlands Lowlands Overall 

Africa 38.17% 16.95% 24.08% 34.99% 17.71% 19.68% 

Asia 3.60% 7.35% 5.98% 5.55% 6.25% 6.02% 

Europe 0.62% 11.69% 11.48% 11.53% 22.39% 22.15% 

Northern America 0.26% 8.69% 7.83% 0.74% 20.13% 17.59% 

Oceania - 5.85% 5.84% - 10.56% 10.54% 

SIDS 16.93% 38.27% 20.34% 27.04% 45.45% 28.56% 

South and Central America 17.56% 14.24% 15.11% 21.59% 17.01% 19.45% 

Table 25. Percentage of areas unsuitable for malaria transmission in the period 1951-1960 that became 

suitable by the period 2013-2022, stratified by Lancet Countdown group and altitude (highlands above or 

equal to 1500 masl). 
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Figure 61. Change in the length of transmission season for P. falciparum from 1951-1960 to 2013-2022 in 

suitable land cover classes suitable for Anopheles mosquitoes. 

 

 

Figure 62. Change in the length of transmission season for P. vivax from 1951-1960 to 2013-2022 in suitable 

land cover classes suitable for Anopheles mosquitoes. 

 

 

 

Figure 63. Newly suitable areas for transmission of P. falciparum in the period 2013-2022 (orange), 

compared to 1951-1960, in land cover classes suitable for Anopheles mosquitoes. 
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Figure 64. Newly suitable areas for transmission of P. vivax in the period 2013-2022 (orange), compared to 

1951-1960, in land cover classes suitable for Anopheles mosquitoes. 

 

P. falciparum 

 

P. vivax 

Highlands Lowlands Overall Highlands Lowlands Overall 

8.01% 10.18% 9.85% 7.3% 18.92% 17.34% 



88 

 

Table 26: Percentage of global areas unsuitable for malaria transmission in the period 1951-1960 that 

became suitable by the period 2013-2022. 

 

 

 

Figure 65. Maximum latitude in the Northern Hemisphere and minimum latitude in the Southern 

Hemisphere with at least one suitable month for malaria transmission per year. Difference in degrees 

between the period 1951-1960 and 2013-2022: 0.95º and 1º in the Southern Hemisphere for P. falciparum 

and P. vivax, respectively, and 0.6º and -0.65º in the Northern Hemisphere. 

Climate change projections (1995-2100) 

Projections of the number of months suitable for malaria transmission showed great spatial heterogeneity (Figure 

A6). Overall, our findings suggest that a 23% of areas not permissive for malaria circulation in the baseline period 

(1995-2014) could become suitable in the medium term (2041-2060) in the context of low emissions, compared 

to a 26% in a high-emission scenario. By the end of the century, although the amount of newly suitable areas 

would not expand further in the low-emission scenario, it would increase to 38% in a high-emission setting. 

Results showed an increase in the length of transmission season in Northern Asia, Europe, Central and North 

America, and the Middle East, by the period 2041-2060 in the SSP1-2.6 scenario. After this peak, there is a 

reduction in the transmission season towards the end of the century. In a high emission scenario (SSP3-7.0), the 

indicator showed a strong rise in the length of the transmission season in the Middle East, as well as in higher 

latitudes, namely North America, Northern Asia, and Europe. In contrast, there was a shortening in the length of 

the transmission season in low latitudes, such as South and Central Americas, the Caribbean, Africa, and 

Australasia. These results were published in the Climate Vulnerability Monitor, 3rd edition 22. 
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Figure 66. Change in the length of transmission season for P. falciparum, compared to 1995-2014. Change 

in length of the malaria transmission season measured as number of months per year with precipitation 

accumulation greater than 80mm, average temperature between 18°C and 32°C and relative humidity 

greater than 60%. Projections were done using the ISIMIP3b simulation round for scenarios SSP1-2.6 and 

SSP3-7.0 (adapted from the Climate Vulnerability Monitor, 3rd edition 22). 

 

Vibrio 

Indicator authors 

Prof Jaime Martinez-Urtaza, Prof Jan C. Semenza, Joaquin A. Trinanes  

Methods  

The methodology and input data for this indicator have been improved and extended for the 2023 report.  

This indicator focuses on mapping environmental suitability for pathogenic Vibrio spp. in coastal zones globally 

(<10km from coast). Vibrio spp. are globally distributed aquatic bacteria that are ubiquitous in warm estuarine 

and coastal waters with low to moderate salinity. V. parahaemolyticus, V. vulnificus, and non-toxigenic V. 

cholerae (non-O1/non-O139) are pathogenic in humans. These Vibrio species are associated with sporadic cases 

of gastroenteritis, wound infections, ear infections, or septicaemia in circumscribed localities.  

Vibrio ecology, abundances, distributions, and patterns of infection are often strongly mediated by environmental 

conditions.134–137 On the basis of the consensus in the literature on what environments Vibrio infections may thrive, 

the indicator uses thresholds of >18°C for Sea Surface Temperature (SST) and <28 PSU for Sea Surface Salinity 

(SSS). The Vibrio suitability regions were determined based on a threshold-based approach for sea surface 

temperature and sea surface salinity estimates. Those areas showing temperatures above 18oC and salinities below 

28 PSU were flagged as suitable for Vibrio. These thresholds were used considering previous studies138,139 and 

match the values currently being used for the global operational Vibrio suitability fields. The threshold value for 



90 

 

salinity is well below the usual ranges in most of the open ocean and takes into account the potential local 

decreases due to freshwater fluxes into the ocean (e.g., precipitation, runoff), making it a conservative estimate. 

For SST and SSS, only those cells closer than 10km to the global coastline were analysed. This band represents 

the areas where human exposure to Vibrio via direct contact with water is maximum, and also the region where 

most of the aquaculture-related activities, another core source of vibriosis, take place. 

In previous Lancet Countdown reports, the Vibrio indicator was estimated based on the two environmental factors, 

seawater temperature and salinity, missing other key elements related to exposure and transmission of Vibrio 

illness, such as socioeconomic and demographic aspects. The advent of a new generation of models, such as those 

participating in CMIP6 (Coupled Model Intercomparison Project 6)140, in combination with the new Shared 

Socioeconomic Pathways (SSPs)141, has provided an exceptional opportunity to introduce a wider prospect and 

more robust projections into the models, integrating an increasing resolution and with key socioeconomic drivers 

(economic growth, demography, education and technological development). For the historical period, the Vibrio 

indicator has been estimated from datasets of SST and SSS that assimilated in-situ and satellite observations. 

For Vibrio indicator projections, data from CMIP6 (AWI-CM-1-1-HR and CNRM-CM6-1-HR) were used to 

estimate areas and periods of Vibrio suitability and population at risk. Additionally, the Inter-Sectoral Impact 

Model Intercomparison Project (ISIMIP) Project 2b annual global population data were employed to compute the 

population at risk. The population potentially affected by exposure to Vibrio has been selected based on the ad-

hoc distance of 100km between areas showing Vibrio suitability and the centre of the population cell for that time 

period. Climate, population and socioeconomic projections were combined to generate more accurate estimates 

of changes in Vibrio suitability and provide a global estimate of the population at risk of vibriosis for 2022 

compared to a 1995-2014 baseline with data coverage from 1982 to present. A conservative assumption of 

infection rate per 100,000 population of 0.3 reported for the USA was applied (as estimated by both COVIS-CDC 

and FoodNet for the USA)142 and took in consideration the limitations of surveillance data and underreporting in 

the USA, scaled up the number of infections 143 times143 to calculate a more probable incidence of disease. 

Finally, the climate, population and socioeconomic projections included into the framework of the Shared 

Socioeconomic Pathways (SSPs)144 were considered to provide accurate estimates of future changes in Vibrio 

suitability and population at risk and generate projections for a low- and high-emission scenarios (SSP1-2.6.   and 

SSP3-7.0 respectively) by the end of the century compared to the pre-industrial period. 

Here suitability is reported at two levels. the length in Km of coastline that experienced suitable conditions for 

Vibrio infections and the period of suitable conditions for Vibrio in days per year. These two indicators were 

calculated globally (for all coastal countries) and the results summarised by country and compared to historical 

data since the records began in 1982.  

Data  

1. Sea surface temperature data from the Global Ocean OSTIA Sea Surface Temperature and Sea Ice 

Reprocessed dataset between 1982-2022.145
  

2. Sea surface salinity data from the Mercator Ocean Reanalysis.146  

3. AWI-CM-1-1-HR and CNRM-CM6-1-HR sea surface temperature (SST) and sea surface salinity (SSS) from 

CMIP6 (2015-2100) SSP126 and SSP370 experiments.147 

4. ISIMIP2b annual global population data at 0.5º resolution for the period 2006-2100 (SSP245&SSP585) and 

1850-2015 (historical).148 

5. Coastline length dataset from the World Factbook data.149 

Caveats  

The results are derived on the basis of suitable SST and SSS conditions only, and do not include other potentially 

important drivers (e.g., globalisation), environmental predictors of pathogenic Vibrio infections (e.g., chlorophyll-

a, turbidity) or disease case data. Nevertheless, these associations have been explored and are reported in the 

supporting references included above.  

In the global analysis, the slope of the trendlines over the time series is mostly flat for the tropical/subtropical 

region and the southern Hemisphere. However, the SST-only suitability shows a strong upward trend in the 

southern hemisphere, indicating that on average temperature conditions are also improving growth conditions for 

Vibrio in these areas, while SSS is generally limiting. However, locally suitable SSS conditions will also occur in 
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these regions based on, for example, variation in local rainfall and river runoff, which can make these regions 

sporadically suitable for Vibrio infections. 

Additional analysis 

Projections for future changes in Vibrio suitability and population at risk by the end of the century compared to 

the pre-industrial period were generated for a low- and high-emission scenarios (SSP1-2.6 and SSP3-7.0 

respectively). Models showed a steady increase in number of cases and the extension of the coastal areas (Figure 

2) showing Vibrio suitability until the end of the 21st century, with a larger slope for SSP370. The exception Is 

AWI-CM-1-1-HR SSP126, whose slope shifts from slightly positive to slightly negative after the middle of the 

century (Fig 5). The mid-term projection shows a general increase in the number of cases and coastline length 

suitable for Vibrio, but SSP126 model trends stabilize near zero or even show a decrease for AWI-CM-1-1-HR 

SSP126 in the second half of the century. The average values of coastline length for the 2041-2060 period are 

25% above the baseline (2015-2022) for SSP126 CMNR, 17% for SSP126 AWI, 34% for SSP370 CMNR, and 

30% for SSP370 AWI.  When the estimated number of cases is considered, those values are 39% (SSP126 

CMNR), 23% (SSP126 AWI), 46% (SSP370 CMNR) and 45% (SSP370 AWI). In summary, under the sustainable 

development scenario SSP126 CMNR (AWI), 4.52% (4.58%) of the global coastal area is projected to be suitable 

for transmission of Vibrio by the middle of the century. For the scenario with high GHG emissions SSP370 CMNR 

(AWI), the values increase to 4.54% (4.84%). 

As for historical data, all WHO regions but the Eastern Mediterranean Region, which could be considered an 

outlier due to its low values when compared to the rest, show a positive trend in the number of estimated cases 

and coastline length, with the highest (resp. lowest) trend values in the Western Pacific Region (resp. European 

Region) for the number of cases and in the European Region (resp. African Region) for the coastline length (Figure 

67, Figure 68). The shift in the number of cases from countries with lower HDI levels (Figure 69) to those with 

higher levels, is mostly the result of those countries increasing their HDI scores. A similar trend can be detected 

in the length of coastline showing suitable conditions for Vibrio (Figure 70). 

 

 

Figure 67: Temporal evolution of the number of cases per WHO region. The figure shows a positive trend 

over the study period with higher values in more densely populated areas in the Western Pacific Region 

and South-East Asia. 
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Figure 68: Length of coastline showing suitable conditions for Vibrio per WHO region. The increasing 

trend is larger in the European Region and the Region of the Americas. 

 

 

Figure 69: Temporal changes in the number of cases per HDI category. The abrupt changes in the time 

series correspond to when countries transition from one HDI category to another (e.g. China moving from 

low to medium in 1997, and from medium to high in 2011). 
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Figure 70: Length of coastline (in km) showing Vibrio suitability at some point of the year per HDI region. 

The trend varies across HDI categories and it is more pronounced for High and Very High, as more 

countries migrated from lower levels. 
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Indicator 1.4: Food Security and Undernutrition 

This indicator consists of two sub-indicators. The first tracks risks to marine food security by monitoring changes 

in sea surface temperature and the consumption of farmed- or catch-based fish products. The second sub-indicator 

tracks the impact of climate change and income on the incidence of food insecurity. 

Food insecurity 

Indicator authors 

Dr Shouro Dasgupta, Prof Elizabeth J.Z. Robinson 

Methods  

The methodology of this indicator is based on previously published models.150 To track the impact of climate 

change and income on the incidence of food insecurity, a panel data regression was used with coefficients that 

vary over time. To operationalise the concept of climate change, the focus was on the number of heatwave days, 

and the frequency of droughts, during the four major crop growing seasons in each region151. A heatwave is 

defined as a period of at least two days where both the daily minimum and maximum temperatures are above the 

95th percentile of the respective climatologies (Indicator 1.1.2) in each region. The gridded 95th percentile of daily 

minimum and maximum temperatures, taken from the ERA5-Land hourly reanalysis152, were calculated for 1986-

2005. The lagged number of heatwaves and frequency of droughts (measured by SPEI-12) was used during the 

crop growing seasons for each year during 2014-2021.  

Increase in the number of heatwave days can affect food insecurity through multiple pathways153. These can 

variously be through the impacts of heat stress and droughts on crop yields, on agricultural labour and therefore 

crop production and agricultural income, on non-agricultural labour and non-agricultural income, on health and 

the ability to earn enough to afford food, on food prices and therefore the affordability of food, and on food supply 

chains and therefore the variety of food (which can be summarised as income and food supply effects). Our 

regression also includes twelve-month Standardized Precipitation Evapotranspiration Index (SPEI) as a measure 

of drought. SPEI-12 was computed using precipitation data from ERA5-Land monthly averaged reanalysis152 and 

the SPEI package in R154. 

Two dependent variables were considered: first, the probability of moderate to severe food insecurity; and second 

the probability of severe food insecurity from the FAO Food Insecurity Experience Scale (FIES)155. To account 

for unobserved heterogeneity such as differences in food and storage policies across countries and changes in the 

prices of food items from year to year, our specification also includes both location and time (year) fixed-effects. 

The standard errors are clustered at the country-level156. Panel data specification can be written as follows: 

𝐹𝐼𝐸𝑆𝑖𝑡 =  𝛽1(𝜏𝑡) + 𝑉(𝑖𝑡) + 𝛾′(𝜏𝑡)𝑋(𝑖𝑡) + 𝛼(𝑖) + 𝜇(𝑖𝑡) 

where 𝐹𝐼𝐸𝑆𝑖𝑡 is the probability of moderate or severe food insecurity or probability of severe food insecurity, 𝑽𝑖𝑡 

is a vector of change in the number of heatwave days and the frequency of drought months during the four major 

crop growing season, and 𝑿𝑖𝑡 is a vector of relevant variables affecting food insecurity – income and a dummy to 

control for the COVID-19 pandemic in 2020. 𝝁𝑖𝑡 is a random error term. All variables are recorded for different 

locations with index 𝑖 = 1, … , 𝑁 and over a number of years 𝑡 = 1, … , 𝑇. The time-varying coefficients allowed 

us to examine whether the relationship between temperature anomaly and food insecurity had evolved over time. 

In the second-step, a counterfactual analysis was conducted to explore the extent to which food insecurity may 

have been affected by climate change150. To do this the cumulative impacts of increasing frequency of heatwaves 

and frequency of drought months above the historical norms over the period 1981–2010 were computed. The 

counterfactual impact of climate change on food insecurity is derived by combining the coefficients from the time-

varying regression with the historical norm average and each year for which food security data are available. The 

effects of increases in the frequency of heatwaves and frequency of drought months was considered over compared 

to the baseline (1981–2010) under which frequency of heatwaves increases according to its historical trend. 

Regression results are summarised in Table 28. 

Data  
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1. Hourly climate data (2m air temperature) from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA5-Land reanalysis.157  

2. Monthly climate data (total precipitation) from ECMWF ERA5-Land reanalysis.112 

3. Food insecurity from the FAO Food Insecurity Experience Scale.158 

Caveats  

The main caveat for temperature anomaly food insecurity indicator is the possible recall bias in the survey data 

and the bias that may have been induced to interviews during the pandemic being conducted by phone instead of 

in-person visits. 

Future form of the indicator 

In the future, disaggregated analysis will be provided by HDI groups. 

Additional analysis 

We estimate food insecurity under a no climate change scenario (1995-2014) using the historical data from five 

GCMs from in ISIMIP3b, and then compare the food insecurity outcomes from this scenario against climate 

projections from three-time epochs, 2021–2040 (near-term), 2041–2060 (medium-term), and 2081-2100 (long-

term) under both SSP1-2.6 and SSP3-7.0, to obtain the change in future food insecurity outcomes compared to 

synthetic historical food insecurity. The output is percentage-point change in food insecurity indicators due to 

future climate change compared to a reference period of 1995-2014, aggregated to the country level. 

 

During 2021–2040, under a lower-emissions scenario of SSP1-RCP2.6, moderate or severe food insecurity is 

projected to be 3.7 percentage points higher compared to the 1995–2014 reference period, but 1.9 percentage 

points higher during 2081–2100, reflecting the benefits of achieving a net zero target by 2050 (Table 27). Under 

the high-emissions and near catastrophic SSP3-RCP7.0 scenario, food insecurity is projected to be 4.1 percentage 

points higher during 2021–2040, but 12.8 percentage points higher during the 2081–2100 period. These findings 

highlight the global food security co-benefits of mitigation and achieving low emission scenarios including net-

zero by 2050, with food insecurity projected to be significantly worse under the higher warming scenarios (Figure 

71).  

 
Table 27: Change (percentage-point) in moderate-severe food insecurity due to climate change-induced 

change in the number of heatwave days with respect to the 1995-2014 baseline. 

Scenario SSP1-RCP2.6 SSP3-RCP7.0 

 2021-2040 2041-2060 2081-2100 2021-2040 2041-2060 2081-2100 

Moderate or severe food insecurity 3.7 2.3 1.9 4.1 6.6 12.8 

 

 

 

 

 
Figure 71: Change (percentage-point) in moderate-severe food insecurity due to climate change-induced 

change in the number of heatwave days with respect to the 1995-2014 baseline. 
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Table 28: Relationship between frequency of heatwaves and droughts, and food insecurity during 2014-

2021 using a time-varying regression. 95% confidence intervals in parentheses. 

  Moderate or severe food insecurity 

Low income 0·183 

 (0·173, 0·193) 

High income -0·115 

 (-0·109, -0·121) 

COVID-19 dummy 0·158 

 (0·150, 0·166) 

Heatwave frequency(t)  
2014 1·16 

 (1·01, 1·31) 

2015 1·52 

 (1·40, 1·64) 

2016 1·93 

 (1·80, 2·06) 

2017 2·27 

 (2·16, 2·38) 

2018 2·96 

 (2·84, 3·08) 

2019 3·3 

 (3·20, 3·40) 

2020 3·72 

 (3·66, 3·78) 

2021 4·03 

 (3·94, 4·12) 

Drought frequency(t)  
2014 0·56 

 (0·41, 0·71) 

2015 0·59 

 (0·49, 0·69) 

2016 0·74 

 (0·62, 0·86) 

2017 0·91 

 (0·83, 0·99) 

2018 1·12 

 (0·99, 0·1·25) 

2019 1·34 

 (1·20, 1·48) 

2020 1·59 

 (1·43, 1·75) 

2021 1·78 

  (1·66, 1·90) 
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Marine Food productivity 

Indicator authors 

Prof Maziar Moradi-Lakeh, Dr Fereidoon Owfi, Dr Mahnaz Rabbaniha, Prof Meisam Tabatabei 

Methods  

The methodology for this indicator applies to a wider geographical area and more countries compared with the 

2022 Lancet Countdown report.15 Sixteen major FAO (Food and Agriculture Organization of the United 

Nations) marine basins and two inland water basins which are important in terms of projected impacts and 

vulnerabilities associated with climate change were selected. One-hundred forty-eight countries located in these 

basins were chosen to assess changes in sea surface temperature (SST), as well as the decreased consumption of 

capture-based fish. 

The input SST data for this indicator were retrieved from the ORAS5 global ocean reanalysis dataset from 1980 

to 2022. A total number of 768,582 grid cells were used to have an accurate estimate for SST variations. 

Moreover, the data concerning capture-based and farmed-based per capita fish consumption in the investigated 

countries from 1980 to 2020 were collected and analysed. Disability-adjusted life years (DALYs) attributed to 

diet low in seafood ω3 by the Global Burden of Diseases was provided based on LC grouping, WHO regions and 

HDI (Human Development Index) levels. 

Data  

1. Ocean data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ORAS5 

reanalysis.159  

2. Capture-based and farmed-based fish consumption per capita from FAO, 1980-2020.160  

3. Attributable DALYs to diet low in seafood 3 from GBD, 1990–2019.44  

Caveats  

There is a lack of information and data in the available databases such as FAO on fish species composition of the 

captured and farmed fish products. This could, in turn, lead to some concerns about the methodological approach 

used to calculate ω3 intake. More specifically, most of the approaches are based on fish intake, which usually 

ignores or underestimates variations in ω3 contents of different types of fishes, and especially capture-based 

compared with farmed-based fish. It should also be highlighted that GBD estimates for the association between 

this dietary risk factor and cardiovascular diseases, as the primary reference for human health impacts, are not 

based on type and source of seafood products either. 

Fish production data were used as a surrogate for fish consumption. This is not a completely accurate assumption, 

but there is no comprehensive alternative source of data for all the investigated countries. 

Future form of the indicator 

Further analysis will be required to connect the different components of the causality chain, i.e., between SST and 

health impacts.  

Additional analysis 

Although the North America and European regions  still have the lowest average SST, they are projected to 

experience the highest increase by the year 2060 (Table 29). Figure 72 shows changes in 3-year moving average 

SST for all countries/territories with coastal waters in 2020-2022 compared to 1981-2010 baseline. The projected 

SST values under the SSP1-2.6 and SSP3-7.0 scenarios compared to the 1981-2010 baseline are shown in Figure 

73. Despite a general increase in per capita fish consumption globally, the share of capture-based in total fish 

consumption has continued to decrease in 2020 (Figure 74). The increasing sea surface temperature well supports 

the consequent decline in fish capture (Figure 75). 
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Table 29: Sea Surface Temperature (SST) in 1980 and 2022, projected SST based on SSP1-2.6 and SSP3-

7.0 compared to the reference period (1981-2010) for the coastal waters, by the Lancet Countdown (LC) 

grouping, WHO regions and Human Development Index (HDI) levels. 

 
Weights: Number of countries (Total: 142) 

Weights: Number of data points (Total: 768,582 for  

measured SST and 717,840 for projected SST) 

 Locations 

  

Measured SST(◦C) 
Mean projected 

SST(◦C) 
Mean measured SST(◦C) 

Mean projected 

SST(◦C) 

1981-

2010 

(Refere

nce) 

198

0 

202

2 

Differen

ce* 

2041-

2060 

SSP1-

2.6 

2041-

2060 

SSP3-

7.0 

1981-

2010 

(Refere

nce) 

198

0 

202

2 

Differen

ce* 

2041-

2060 

SSP1-

2.6 

2041-

2060 

SSP3-

7.0 

LC grouping  

  
Africa 25.15 

24.

89 

25.

33 
0.307 26.43 26.54 23.67 

23.

40 

23.

77 
0.251 24.98 25.08 

  
Asia 24.88 

24.

83 

25.

35 
0.635 25.21 25.25 25.49 

25.

41 

26.

03 
0.599 26.02 26.10 

  
Europe 12.40 

11.

73 

13.

35 
0.943 13.61 13.48 9.28 

8.7

7 

10.

11 
0.806 10.75 10.64 

  

Northern 

America 
7.30 

7.0

4 

8.0

3 
0.669 9.65 9.67 7.35 

7.0

8 

8.0

7 
0.667 9.69 9.71 

  
Oceania 18.80 

18.

63 

19.

58 
0.547 18.79 19.13 20.75 

20.

64 

21.

30 
0.407 21.03 21.33 

  
SIDS 27.63 

27.

63 

27.

93 
0.354 27.68 27.86 27.99 

27.

94 

28.

50 
0.484 28.04 28.22 

  

South and 

Central 

America 

24.13 
24.

20 

24.

17 
0.184 25.40 25.53 22.08 

22.

10 

22.

01 
0.118 23.40 23.54 

WHO regions  

  
Africa 25.82 

25.

60 

25.

96 
0.284 27.17 27.32 24.65 

24.

44 

24.

68 
0.194 26.16 26.33 

  
Americas 24.92 

24.

95 

25.

15 
0.312 25.57 25.70 17.38 

17.

30 

17.

68 
0.375 18.87 18.96 

  

Eastern 

Mediterra

nean 

24.89 
24.

79 

25.

27 
0.566 24.98 25.00 24.61 

24.

46 

24.

97 
0.500 24.90 24.92 

  
Europe 13.33 

12.

71 

14.

25 
0.960 14.53 14.41 10.01 

9.5

2 

10.

83 
0.825 11.48 11.37 

  

South-

East Asia 
28.55 

28.

63 

28.

80 
0.310 28.80 28.95 28.76 

28.

75 

29.

14 
0.401 29.14 29.32 

  

Western 

Pacific 
25.88 

25.

81 

26.

33 
0.457 25.95 26.11 23.54 

23.

41 

24.

19 
0.590 23.90 24.06 

HDI classification  

  
Low 27.23 

27.

07 

27.

47 
0.336 28.04 28.20 27.34 

27.

24 

27.

56 
0.298 27.89 28.06 

  
Medium 26.77 

26.

71 

27.

01 
0.339 27.57 27.71 27.21 

27.

11 

27.

61 
0.430 27.83 27.99 

  
High 24.96 

24.

82 

25.

27 
0.416 25.53 25.63 25.48 

25.

36 

25.

78 
0.387 26.23 26.35 

  
Very High 16.87 

16.

52 

17.

56 
0.754 17.75 17.73 13.66 

13.

41 

14.

30 
0.631 14.98 15.00 

  
N/A 26.8 

26.

8 

26.

96 
0.238 26.63 26.78 26.79 

26.

76 

27.

02 
0.323 26.4 26.58 

All  22.93 
22.

73 

23.

34 
0.499 23.66 23.73 19.69 

19.

51 

20.

18 
0.517 20.70 20.78 

* The coastal SST average for 2020-22 compared to the 1981-2010 baseline. 
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Figure 72: Change in the measured 3-year moving average of the global coastal sea surface temperature 

(SST) compared to the 1981-2010 baseline.  
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Figure 73: Projected change in global coastal sea surface temperature (SST) under the ssp1-2.6 and SSP3-

7.0 scenarios  with respect to the 1981-2010 baseline.  

 
Figure 74: Population weighted average fish consumption per capita in 177 investigated 

countries/territories, separated by the origin of fish (marine capture-based and farm-based) from 1980 to 

2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 

 

 

 

 

 

 

 

 
 

 
Figure 75: Changes in 3-year moving average sea surface temperature (oC) for the countries/territories 

with coastal waters: 2020-22 compared to the 1981-2010 baseline.  
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Section 2: Adaptation, Planning, and Resilience for Health 

Lead Authors: Prof Kristie L. Ebi and Prof Maria Nilsson 

Research Fellow: Carole Green 

2.1: Assessment and Planning of Health Adaptation  

Indicator 2.1.1: National Assessments of Climate Change Impacts, Vulnerability and 

Adaptation for Health 

Indicator authors 

Dr Diarmid Campbell-Lendrum, Tara Neville 

Methods  

Data for this indicator was obtained from two sources. First, the number of countries that have committed to the 

COP26 Health Programme initiative to build a climate resilient health system 162 is tracked through the Alliance 

for Transformative Action on Climate and Health (ATACH)162.  The commitment to build a climate resilient 

health system includes three key components: 1) conducting a climate change and health vulnerability and 

adaptation (V&A) assessment; 2) developing a health national adaptation plan (HNAP) informed by the results 

of the climate and health V&A assessment; and using the V&A and HNAP to facilitate access to climate change 

funding for health. Progress on the COP26 commitments are tracked through regular reporting to the ATACH. 

Data for this indicator represents the total number of countries that had made a commitment to the COP26 

Health Programme as of April 30, 2023. For the most recent list of country commitments please see the ATACH 

website at: https://www.who.int/initiatives/alliance-for-transformative-action-on-climate-and-health/country-

commitments.161  

Global progress on the number of countries that have conducted climate change and health vulnerability and 

adaptation assessments is also tracked through the WHO Health and Climate Change Global Survey (2021). 

This voluntary, triennial survey is sent to all WHO Member States and a small number of non-Member 

territories. The survey is completed by Ministry of Health focal points and often as part of a multistakeholder 

consultation. The last global survey was published in 2021. Of the 194 WHO member states and non-Member 

territories, 95 participated in the 2021 global survey, providing representation from all six WHO regions. The 

2021 global survey results provided the baseline data for the COP26 commitments with updates on the progress 

until 2022 coming from regional and country reporting through the ATACH. 

Validation of the 2021 country reported global survey data was undertaken in multiple steps. First, survey 

responses were reviewed for missing information or inconsistencies with follow-up questions directed to survey 

respondents. A summary of responses was shared with WHO regional focal points and key informants for 

review, comments, and validation. Source documents including national health strategies and plans, and climate 

change and health vulnerability and adaptation assessments were collected. A desktop review of these source 

documents was conducted to compare with survey results with follow-up to survey respondents to seek 

clarification or additional documentation. Findings were also cross referenced with existing external 

publications. Data detailing all the ministries, institutions and national stakeholders that provided contributions 

to or review of the survey responses were collected in order to provide insight into the national consultation 

process of each survey submission. Of the 95 country submissions, 69 surveys were completed in consultation 

with one to six different stakeholders, ministries, or institutions. Five countries consulted between 10 to 12 

stakeholders, ministries, or institutions. 15 countries did not consult with other entities or health programmes. 

Information was not available for the remaining six countries. Finally, all respondents reviewed and 

acknowledged the WHO data policy statement on the use and sharing of data collected by WHO in Member 

States outside the context of public health emergencies. 

Of note, due to the ongoing pandemic, the standard data collection procedures were modified to reduce 

reporting burden on countries that wished to participate in the global survey but that were facing human 

resource constraints due to pandemic response. In eight cases, WHO prepared pre-filled survey questionnaires 
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with data provided by ministries of health in the previous 2018 survey cycle or using data the countries had 

published in the 2020/2021 WHO UNFCCC health and climate change country profile when available. These 

countries were requested to review, revise, and complete the hard copy questionnaires. These hard copy 

questionnaires were then entered into the online platform by WHO. The same data validation steps as described 

above were then followed. Additionally, a number of countries requested an extension of the reporting period. 

As such, there may be a slight increase in the total number of participating countries and the WHO Health and 

Climate Change Global Survey Report and associated dynamic data dashboard will provide the definitive 

summary of findings. 

Further information on the WHO Health and Climate Change Global Survey, its methodology, and the WHO 

UNFCCC Health and Climate Change Country Profile Project can be found at 

https://www.who.int/activities/monitoring-science-and-evidence-on-climate-change-and-health/health-

andclimate-global-survey 

The WHO questionnaire asks countries whether they have conducted a climate change and health vulnerability 

and adaptation assessment, defined as “a process and a tool that allows countries to evaluate which populations 

are most vulnerable to different kinds of health effects from climate change, to identify weaknesses in the 

systems that should protect them, and to specify interventions to respond. Assessments can also improve 

evidence and understanding of the linkages between climate and health within the assessment area, serve as a 

baseline analysis against which changes in disease risk and protective measures can be monitored, provide the 

opportunity for building capacity, and strengthen the case for investment in health protection”. 

 

More information on climate change and health vulnerability and adaptation assessments, can be found in: 

https://www.who.int/teams/environment-climate-change-and-health/climate-change-and-

health/capacitybuilding/toolkit-on-climate-change-and-health/vulnerability  

Data  

1. Alliance for Transformative Action on Climate Change and Health (ATACH)161 

2. 2021 WHO Health and Climate Change Global Survey.162 

Caveats  

The global survey sample is not a representative sample of all countries as this survey was voluntary, however, 

the inclusion of 95 countries in this survey, despite a global pandemic, demonstrates significant global coverage. 

Data for this indicator represents the total number of countries that had made a commitment to the COP26 

Health Programme as of April 30, 2023. For the most recent list of country commitments please see the ATACH 

website at: https://www.who.int/initiatives/alliance-for-transformative-action-on-climate-and-health/country-

commitments.161 

Additional analysis 

Full list of countries participating in the 2021 WHO Health and Climate Change Global Survey: Argentina, 

Azerbaijan, Bahamas, Bahrain, Barbados, Belize, Benin, Bhutan, Bolivia (Plurinational Bolivia State of), Brazil, 

British Virgin Islands, Brunei Darussalam, Bulgaria, Cabo Verde, Cambodia, Cameroon, Canada, China, 

Colombia, Comoros, Costa Rica, Côte d'Ivoire, Croatia, Cuba, Cyprus, Czech Republic, Dominica, Dominican 

Republic, Egypt, El Salvador, Eritrea, Estonia, Ethiopia, Germany, Ghana, Grenada, Guatemala, Guinea, 

Guyana, Haiti, India, Iran (Islamic Republic of), Israel, Italy, Jamaica, Jordan, Kazakhstan, Kenya, Kyrgyzstan, 

Lebanon, Lithuania, Madagascar, Malawi, Marshall Islands, Micronesia (Federated States of), Mozambique, 

Netherlands, Nicaragua, Nigeria, North Macedonia, Occupied Palestinian Territory, Oman, Palau, Papua New 

Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Republic of Moldova, Rwanda, Saint Kitts and Nevis, 

Saint Lucia, San Marino, Sao Tome And Principe, Saudi Arabia, Serbia, Seychelles, Sierra Leone, Slovakia, 

South Africa, Sri Lanka, Suriname, Sweden, Thailand, Togo, Trinidad and Tobago, Turkmenistan, United 

Republic of Tanzania, United States of America, Uruguay, Vanuatu, Yemen, Zambia, Zimbabwe. 

COP26 Health Programme 

https://www.who.int/teams/environment-climate-change-and-health/climate-change-and-health/capacitybuilding/toolkit-on-climate-change-and-health/vulnerability
https://www.who.int/teams/environment-climate-change-and-health/climate-change-and-health/capacitybuilding/toolkit-on-climate-change-and-health/vulnerability
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Supported by the UK government, as the Presidency of COP26, the World Health Organization (WHO) and 

other partners, the COP26 Health Programme enables transformational change to protect the health of people 

and the planet.  

Initiatives under the COP26 Health Programme include:  

• Building climate resilient health systems 

•  Developing low carbon sustainable health systems 

• Adaptation Research for Health  

• The inclusion of health priorities in Nationally Determined Contributions 

• Raising the voice of health professionals as advocates for stronger ambition on climate 

change 

Two of the Programme’s key initiatives support countries in developing Climate Resilient and Low Carbon 

Sustainable Health Systems, with countries expected to announce their commitments to these initiatives by 

COP26 in November 2021. Commitments are anticipated to be implemented in the coming years and will allow 

countries to develop a roadmap for future investments in climate resilient and low carbon sustainable health 

systems and facilities.  

Commitment 1: Climate resilient health systems  

• Commit to conduct climate change and health vulnerability and adaptation assessments (V&As) at 

population level and/or health care facility level by a stated target date  

• Commit to develop a health National Adaptation Plan informed by the health V&A, which forms part 

of the National Adaptation Plan to be published by a stated target date  

• Commit to use the V&A and HNAP to facilitate access to climate change funding for health (e.g., 

project proposals submitted to the Global Environmental Facility, Green Climate Fund, Adaptation 

Fund, or GCF Readiness programme).  

Commitment 2: Sustainable low carbon health systems  

• High ambition/high emitters: Commit to set a target date by which to achieve health system net zero 

emissions (ideally by 2050)  

• All countries: Commitment to deliver a baseline assessment of greenhouse gas emissions of the health 

system (including supply chains)  

All countries: Commit to develop an action plan or roadmap by a set date to develop a sustainable low carbon 

health system (including supply chains) which also considers human exposure to air pollution and the role the 

health sector can play in reducing exposure to air pollution through its activities and its actions 

Indicator 2.1.2: National Adaptation Plans for Health 

Indicator authors 

Dr Diarmid Campbell-Lendrum, Tara Neville 

Methods 

Data for this indicator was obtained from two sources. First, the number of countries that have committed to the 

COP26 Health Programme initiative to build a climate resilient health system 162 are tracked through the 

Alliance for Transformative Action on Climate and Health (ATACH)162.  The commitment to build a climate 

resilient health system includes three key components: 1) conducting a climate change and health vulnerability 

and adaptation (V&A) assessment; 2) developing a health national adaptation plan (HNAP) informed by the 

results of the climate and health V&A assessment; and using the V&A and HNAP to facilitate access to climate 

change funding for health. Progress on the COP26 commitments are tracked through regular reporting to the 

ATACH. Data for this indicator represents the total number of countries that had made a commitment to the 

COP26 Health Programme as of April 30, 2023. For the most recent list of country commitments please see the 
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ATACH website at: https://www.who.int/initiatives/alliance-for-transformative-action-on-climate-and-

health/country-commitments.161  

Global progress on the number of countries that have completed a health national adaptation plan (HNAP) is 

also tracked through the WHO Health and Climate Change Global Survey (2021). This voluntary, triennial 

survey is sent to all WHO Member States and a small number of non-Member territories. The survey is 

completed by Ministry of Health focal points and often as part of a multistakeholder consultation. The last 

global survey was published in 2021. Of the 194 WHO member states and non-Member territories, 95 

participated in the 2021 global survey, providing representation from all six WHO regions. The 2021 global 

survey results provided the baseline data for the COP26 commitments with updates on the progress until 2022 

coming from regional and country reporting through the ATACH.Validation of the 2021 country reported global 

survey data was undertaken in multiple steps. First, survey responses were reviewed for missing information or 

inconsistencies with follow-up questions directed to survey respondents. A summary of responses was shared 

with WHO regional focal points and key informants for review, comments, and validation. Source documents 

including national health strategies and plans, and climate change and health vulnerability and adaptation 

assessments were collected. A desktop review of these source documents was conducted to compare with survey 

results with follow-up to survey respondents to seek clarification or additional documentation. Findings were 

also cross referenced with existing external publications. Data detailing all the ministries, institutions and 

national stakeholders that provided contributions to or review of the survey responses were collected in order to 

provide insight into the national consultation process of each survey submission. Of the 95 country submissions, 

69 surveys were completed in consultation with one to six different stakeholders, ministries, or institutions. Five 

countries consulted between 10 to 12 stakeholders, ministries, or institutions. 15 countries did not consult with 

other entities or health programmes. Information was not available for the remaining six countries. Finally, all 

respondents reviewed and acknowledged the WHO data policy statement on the use and sharing of data 

collected by WHO in Member States outside the context of public health emergencies.  

Of note, due to the ongoing pandemic, the standard data collection procedures were modified to reduce 

reporting burden on countries that wished to participate in the global survey but that were facing human 

resource constraints due to pandemic response. In eight cases, WHO prepared pre-filled survey questionnaires 

with data provided by ministries of health in the previous 2018 survey cycle or using data the countries had 

published in the 2020/2021 WHO UNFCCC health and climate change country profile when available. These 

countries were requested to review, revise, and complete the hard copy questionnaires. These hard copy 

questionnaires were then entered into the online platform by WHO. The same data validation steps as described 

above were then followed. Additionally, a number of countries requested an extension of the reporting period. 

As such, there may be a slight increase in the total number of participating countries and the WHO Health and 

Climate Change Global Survey Report and associated dynamic data dashboard will provide the definitive 

summary of findings. 

Further information on the WHO Health and Climate Change Global Survey, its methodology, and the WHO 

UNFCCC Health and Climate Change Country Profile Project can be found at 

https://www.who.int/activities/monitoring-science-and-evidence-on-climate-change-and-health/health-

andclimate-global-survey  

The questionnaire asks whether countries have a national health and climate change plan/strategy in place, 

defined as “a government plan or strategy which considers the health risks of climate change, and health 

adaptation and/or health resilience to climate change. It could be part of a broader national climate change 

plan/strategy that includes health”. If they have it, countries are requested to upload the plan documentation.  

More information on health national adaptation plans (HNAPS), can be found here: 

https://www.who.int/teams/environment-climate-change-and-health/climate-change-and-

health/capacitybuilding/toolkit-on-climate-change-and-health/adaptation 

Data  

1. Alliance for Transformative Action on Climate Change and Health (ATACH)161 

2. 2021 WHO Health and Climate Change Global Survey.162 

Caveats  

https://www.who.int/activities/monitoring-science-and-evidence-on-climate-change-and-health/health-andclimate-global-survey
https://www.who.int/activities/monitoring-science-and-evidence-on-climate-change-and-health/health-andclimate-global-survey
https://www.who.int/teams/environment-climate-change-and-health/climate-change-and-health/capacitybuilding/toolkit-on-climate-change-and-health/adaptation
https://www.who.int/teams/environment-climate-change-and-health/climate-change-and-health/capacitybuilding/toolkit-on-climate-change-and-health/adaptation
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The global survey sample is not a representative sample of all countries as this survey was voluntary, however, 

the inclusion of 95 countries in this survey, despite a global pandemic, demonstrates significant global coverage.  

Data for this indicator represents the total number of countries that had made a commitment to the COP26 

Health Programme as of April 30, 2023. For the most recent list of country commitments please see the ATACH 

website at: https://www.who.int/initiatives/alliance-for-transformative-action-on-climate-and-health/country-

commitments.161 

 

Future form of the indicator  

The WHO Health and Climate Change Global Survey is a triennial survey and will continue to be the primary 

source of data to track this indicator.  

The future evolution of this indicator will explore the use of evidence (particularly findings from vulnerability 

and adaptation assessments) to inform the development of strategies/plans and progress on level of 

implementation of strategies/plans. With more countries initiating the national adaptation plan (NAP) process, 

alignment of the health component with the overall NAP will also be more closely monitored and examined. 

Interim information regarding the specific content of national strategies/plans, as explored in this qualitative 

analysis, may be re-assessed in the future.  

Additional analysis  

Full list of countries participating in the 2021 WHO Health and Climate Change Global Survey: Argentina, 

Azerbaijan, Bahamas, Bahrain, Barbados, Belize, Benin, Bhutan, Bolivia (Plurinational Bolivia State of), Brazil, 

British Virgin Islands, Brunei Darussalam, Bulgaria, Cabo Verde, Cambodia, Cameroon, Canada, China, 

Colombia, Comoros, Costa Rica, Côte d'Ivoire, Croatia, Cuba, Cyprus, Czech Republic, Dominica, Dominican 

Republic, Egypt, El Salvador, Eritrea, Estonia, Ethiopia, Germany, Ghana, Grenada, Guatemala, Guinea, 

Guyana, Haiti, India, Iran (Islamic Republic of), Israel, Italy, Jamaica, Jordan, Kazakhstan, Kenya, Kyrgyzstan, 

Lebanon, Lithuania, Madagascar, Malawi, Marshall Islands, Micronesia (Federated States of), Mozambique, 

Netherlands, Nicaragua, Nigeria, North Macedonia, Occupied Palestinian Territory, Oman, Palau, Papua New 

Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Republic of Moldova, Rwanda, Saint Kitts and Nevis, 

Saint Lucia, San Marino, Sao Tome And Principe, Saudi Arabia, Serbia, Seychelles, Sierra Leone, Slovakia, 

South Africa, Sri Lanka, Suriname, Sweden, Thailand, Togo, Trinidad and Tobago, Turkmenistan, United 

Republic of Tanzania, United States of America, Uruguay, Vanuatu, Yemen, Zambia, Zimbabwe. 

•   

 

Indicator 2.1.3: City-Level Climate Change Risk Assessments 

Indicator authors 

Prof Karyn Morrisey 

Methods  

Indicator 2.1.3 captures data on at the city level on:  

1. cities that have undertaken a climate change risk or vulnerability assessment and;  

2. the perceived vulnerability city leaders of their public health assets to climate change  

Data 

1. 2022 CDP Annual Cities Survey163 

Caveats  
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This is a self-reported survey, non-compulsory survey as such data provided may be subjective and response 

rates can fluctuate, with low uptake in certain areas, particularly the Middle East. 

Future form of the indicator 

The CDP collect this data annually and it is foreseen that the data collection will continue to 2030. Additional 

analyses may be conducted using data from the CDP annual survey to monitor associations between city-level 

health vulnerabilities and track reporting trends over time. 

Additional analysis 

Table 30 Cities responses to climate change and health questions 

Details of Health outcomes calculation 

Health outcomes *351 525 0.66857143 

Health systems *141 525 0.26857143 

Areas outside the health sector *33 525 0.06285714 

cities responding CC impacts Health  525 
 

Unable to measure climate change related health impacts  *140 
  

Do not know (DNK) *22 
  

cities responding to this question: adjusted for duplicates:   *670   

    

 

*Adjusted for duplicate city records in data: see stata file 

Overall Cities Responding CC is impacting health 

cities responding to survey overall 986 

CC does not impact (null RESPONSES) 316 

Overall cities responding CC impacts Health.   53% (525/986) 

 

 

Table 31 Cities climate change assessment by HDI grouping 

Climate Change Assessment by HDI Number. Percent 

Low HDI   

No, and we are not intending to undertake due to lack of expertise/technical 

capacity 2 9% 

No, and we are not intending to undertake due to lack of financial capacity 1 4% 

No, but we are currently undertaking one and it will be complete in the next year 2 9% 

No, but we are intending to undertake one in the next two years 4 17% 

Yes, a climate risk and vulnerability assessment has been undertaken 14 61% 

Total 23   

  
  

  

Medium HDI    

No, and we are not intending to undertake due to lack of expertise/technical 

capacity 2 3% 

No, and we are not intending to undertake due to lack of financial capacity 3 4% 

No, and we are not intending to undertake due to lack of financial capacity and 

expertise/technical capacity 4 5% 
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No, but we are currently undertaking one and it will be complete in the next year 9 12% 

No, but we are intending to undertake one in the next two years 9 12% 

Yes, a climate risk and vulnerability assessment has been undertaken 50 65%  

Total 77  

  
 

  

High HDI    

No, and we are not intending to undertake due to other higher priorities 2 1% 

No, and we are not intending to undertake due to lack of expertise/technical 

capacity 5 2% 

No, and we are not intending to undertake due to lack of financial capacity 6 2% 

No, and we are not intending to undertake due to lack of financial capacity and 

expertise/technical capacity 9 4% 

No, and we are not intending to undertake due to other priorities 2 1% 

No, but we are currently undertaking one and it will be complete in the next year 24 10% 

No, but we are intending to undertake one in the next two years 54 22% 

Yes, a climate risk and vulnerability assessment has been undertaken 144 59% 

Total 246   

  
  

  

Very High HDI    

No, and we are not intending to undertake due to other higher priorities 1 0% 

No, and we are not intending to undertake due to lack of expertise/technical 

capacity 3 1% 

No, and we are not intending to undertake due to lack of financial capacity 1 0% 

No, and we are not intending to undertake due to lack of financial capacity and 

expertise/technical capacity 6 1% 

No, and we are not intending to undertake due to other priorities 2 0% 

No, but we are currently undertaking one and it will be complete in the next year 39 7% 

No, but we are intending to undertake one in the next two years 58 11% 

Yes, a climate risk and vulnerability assessment has been undertaken 440 80% 

Total 550   

 

 

 

Table 32 Cities question on undertaking climate change assessment in Low and Medium HDI Countries 

Reason Climate Change assessment not undertaken in Low and Middle HDI Countries 

No, and we are not intending to undertake due to other higher priorities 4 8% 

No, and we are not intending to undertake due to lack of financial capacity and 

expertise/technical capacity 20 40% 

No, and we are not intending to undertake due to lack of financial capacity 11 22% 

No, and we are not intending to undertake due to lack of expertise/technical 

capacity 12 24% 

other  3 6% 

  50   
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2.2: Enabling Conditions, Adaptation Delivery and Implementation 

Indicator 2.2.1: Climate Information for Health   

Indicator authors 

Dr Joy Shumake-Guillemot 

Methods  

The number of World Meteorological Organization (WMO) national meteorological and hydrological services 

(NMHS) providing climate services to the health sector is calculated based on self-reported information 

provided by NMHS through the Country Profile Database Integrated questionnaire. The questionnaire is one of 

the main sources of information to the WMO Country Profile database and is open all year round for WMO 

members to update their profile information. 

Reported data reflects answers to Question number 7.6 of this questionnaire: “Please indicate which user 

communities/sectors your NMHS provides with climate products/information and estimate the extent to which 

these products are used to improve decisions”. “Human Health” is one of multiple sectors which can be chosen.  

Data  

1. World Meteorological Organization Country Profile database.164  

 

Caveats  

The current data source from WMO only considers climate services provided by NMHS. It is unclear the degree 

to which other providers, such as academic institutions and research projects, private sector products, products 

from other Ministries, or regional and global products and services are being used, in proportion to services 

made available by NMHS.  

The open questionnaire can be updated at any time by WMO members, therefore the figures reported here may 

change over the year. As each country may update their profile information at different moments in time, 

snapshots do not reflect progress for any given year but rather information provided until a certain date.  

The current questionnaire does not record the number of WMO members that do not provide climate services to 

the health sector.  

The questionnaire captures information on the provision of climate services, the status of service provision to 

the health sector and the type of services provided (divided in 5 categories). Questions do not capture the source 

or quality of the service and only one of the answer options covers the utility of the climate services. They do 

not capture whether data originates from national meteorological observations or is resulting from regional or 

global products. They do not capture the potential use of all-sector forecasts or outlooks which are accessed and 

used by the health sector.  

The WMO and WHO have some differences in their individual Member States. Responses collected from 

WMO Member States were reclassified according to WHO Region. WMO members that are not individual 

WHO members were excluded from the analyses and include Macao and Hong Kong (reported as China), 

Curaçao, French Polynesia, and St. Maartens. The following WHO Members are not members of WMO (and 

therefore representative data is not available): Andorra, Equatorial Guinea, Marshall Islands, Nauru, Palau, San 

Marino. 

Future form of the indicator  

In 2019, WMO began implementation of new survey instruments to provide greater insight on the status of 

climate service provision for the health sector and the type of service provided. Other complementary WMO 

surveys capturing specific product types, user satisfaction, and application areas, may be publicly available in 

the future to inform future editions of this indicator.  
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The WHO Health and Climate Change Country Survey now contains indicators on the inclusion of 

meteorological information in integrated risk monitoring and early warning systems for climate-sensitive 

diseases. This information may be used to improve this indicator in future publications. 

 

Indicator 2.2.2: Air Conditioning: Benefits and Harms 

Indicator authors 

Prof Robert Dubrow 

Methods  

Premature deaths from ambient PM 2.5 exposure due to electricity use for air conditioning.  

To estimate country/region-specific premature deaths from ambient PM2.5 exposure due to electricity use for air 

conditioning, the proportion of total electricity final consumption used for air conditioning (obtained from IEA) 

was multiplied by the estimated country/region-specific premature deaths due to PM2.5 emissions from electric 

power plants, taken from Indicator 3.3. Indicator 3.3 estimated premature deaths from ambient PM2.5 exposure 

for 140 countries. To calculate premature deaths from ambient PM2.5 exposure for each IEA-defined region, 

premature deaths from ambient PM2.5 exposure across the countries classified into each region were summed. 

Data  

The IEA kindly provided data for 2000–2021, including revisions based on improved IEA analyses of its 2000– 

2020 data used in the 2022 Lancet Countdown report. These data included the proportion of households with air 

conditioning; total electricity final consumption used for air conditioning (TWh); CO2 emissions due to air 

conditioning (megatons); and proportion of total electricity final consumption used for air conditioning (used in 

the calculation of premature deaths from ambient PM2.5 exposure due to electricity use for air conditioning). 

Proportion of total electricity final consumption used for air conditioning was provided for 12 individual 

countries and for 14 IEA-defined regions that did not include the 12 individual countries. The countries and 

regions together constituted the entire world.  

The following are the 12 individual countries: Canada, Brazil, China, India. Indonesia, Japan, Mexico, Republic 

of Korea, Russian Federation, South Africa, United Kingdom, United States  

The following are the 14 regions (the 12 individual countries were not included in the regions):  

1. Caspian: Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, 

Uzbekistan  

2. European Union A: Italy, France, Germany 

3. European Union B: Austria, Belgium, Czechia, Denmark, Estonia, Finland, Greece, Hungary, Ireland, 

Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden 

4.  European Union C: Bulgaria, Croatia, Cyprus, Malta, Romania 

5. Other Europe A: Iceland, Israel, Norway, Switzerland, Turkey 

6. Other Europe B: Albania, Belarus, Bosnia and Herzegovina, Gibraltar, Holy See, Kosovo, Montenegro, 

North Macedonia, Republic of Moldova, Serbia, Ukraine 

7. North Africa: Algeria, Egypt, Libya, Morocco, Tunisia 

8. Other Africa: Angola, Benin, Botswana, Burkina Faso, Burundi, Cabo Verde, Cameroon, Central 

African Republic, Chad, Comoros, Congo, Côte d'Ivoire, Democratic Republic of the Congo, Djibouti, 

Equatorial Guinea, Eritrea, Eswatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, 

Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, 

Nigeria, Réunion, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South 

Sudan, Sudan, Togo, Uganda, United Republic of Tanzania, Zambia, Zimbabwe 



111 

 

9. Chile and Colombia: Chile, Colombia 

10. Other Latin America: Antigua and Barbuda, Argentina, Aruba, Bahamas, Barbados, Belize, Bermuda, 

Bolivia, Bolivarian Republic of Venezuela, British Virgin Islands, Cayman Islands, Costa Rica, Cuba, 

Curaçao, Dominica, Dominican Republic, Ecuador, El Salvador, Falkland Islands (Malvinas), French 

Guiana, Grenada, Guadeloupe, Guatemala, Guyana, Haiti, Honduras, Jamaica, Martinique, Montserrat, 

Caribbean Netherlands, Nicaragua, Panama, Paraguay, Peru, Saint Kitts and Nevis, Saint Lucia, Saint 

Pierre and Miquelon, Saint Vincent and the Grenadines, Sint Maarten (Dutch part), Suriname, Trinidad 

and Tobago, Turks and Caicos Islands, Uruguay 

11. Middle East: Bahrain, Iraq, Islamic Republic of Iran, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi 

Arabia, Syrian Arab Republic, United Arab Emirates, Yemen 

12. Association of Southeast Asian Nations (ASEAN) countries: Brunei Darussalam, Cambodia, Lao 

People’s Democratic Republic, Malaysia, Myanmar, Philippines, Pitcairn Island, Singapore, Thailand, 

Vietnam 

13. Other Asia: Afghanistan, Bangladesh, Bhutan, Cook Islands, Democratic People’s Republic of Korea, 

Fiji, French Polynesia, Kiribati, Macao SAR (China), Maldives, Mongolia, Nepal, New Caledonia, 

Pakistan, Palau, Papua New Guinea, Samoa, Solomon Islands, Sri Lanka, Taiwan, Timor-Leste, Tonga, 

Vanuatu 

14. Australia and New Zealand: Australia, New Zealand 

The following countries were not included in the calculation of IEA-defined-region-level number of premature 

deaths due to PM2.5 emissions from electric power plants because, although they were included in IEA regions, 

they were not included in the assessment of number of premature deaths due to PM2.5 emissions from electric 

power plants in Indicator 3·3:  

Other Europe B: Gibraltar, Holy See, Kosovo 

Other Africa: Réunion, Sao Tome and Principe, Seychelles, South Sudan  

Other Latin America: Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize, Bermuda, British Virgin 

Islands, Caribbean Netherlands, Cayman Islands, Costa Rica, Cuba, Curaçao, Dominica, Dominican Republic, 

El Salvador, Falkland Islands (Malvinas), French Guiana, Grenada, Guadeloupe, Guatemala, Guyana, Haiti, 

Honduras, Jamaica, Martinique, Montserrat, Nicaragua, Panama, Saint Kitts and Nevis, Saint Lucia, Saint Pierre 

and Miquelon, Saint Vincent and the Grenadines, Sint Maarten (Dutch part), Suriname, Trinidad and Tobago, 

Turks and Caicos Islands  

Middle East: Bahrain, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Syrian Arab Republic, United Arab 

Emirates, Yemen 

ASEAN countries: Pitcairn Island 

Other Asia: Cook Islands, Fiji, French Polynesia, Kiribati, Macao SAR (China), Maldives, New Caledonia, 

Palau, Papua New Guinea, Samoa, Solomon Islands, Taiwan, Timor-Leste, Tonga, Vanuatu 

Caveats  

Estimate of number of premature deaths due to PM2.5 emissions from air conditioning:  

To estimate the number of premature deaths due to PM2.5 emissions from air conditioning, the finer the spatial 

resolution, the more accurate the estimates. The data available for proportion of total electricity final 

consumption used for air conditioning were at the country or region level. Thus, in a given country/region, it 

was by necessity assumed that the electricity market is completely connected, so that the share of electricity 

used for air conditioning can be equally applied to power plant emissions throughout the country/region. This 

assumption may not be accurate, especially for larger countries/regions. 

Notably, the sustainability of air conditioning could be increased through generation of electricity by renewable 

energy and more efficient air conditioning technology. These measures would reduce both CO2 emissions and 

the number of premature deaths due to PM2.5 emissions from air conditioning. Greenhouse gas emissions from 

air conditioning could be further reduced through phase-out of hydrochlorofluorocarbon refrigerants in favour of 
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refrigerants that are not greenhouse gases, as called for in the 2016 Kigali Amendment to the Montreal Protocol. 

Technology to capture and recycle waste heat would make air conditioning even more efficient and would 

reduce its contribution to the urban heat island effect. 

Future form of the indicator 

The indicator in the 2021 report estimated the number of heat-related deaths averted by air conditioning in the 

65-and-older population by country/region and for the world. There were a number of limitations to these 

estimates, such that they were considered to be “ballpark” estimates that would need considerable refinement in 

future years. The intention is to present improved estimates in future years, including all age groups. In addition, 

city-level case studies to estimate number of lives saved from air conditioning versus premature deaths from 

exposure to PM2.5 due to air conditioning may be performed. The indicator may be updated each year as new 

data become available on air conditioning use. Trends in vulnerability to heatwave-related mortality could be 

assessed with cooling degree days. Finally, metrics related to more efficient cooling (e.g., national building 

codes, minimum energy performance standards, labelling rules for air conditioners) and progress on 

implementing the Kigali Amendment may be tracked in the future. 

Indicator 2.2.3: Urban Green Space  

Indicator authors 

Prof Patrick Kinney, Dr Jennifer D. Stowell 

Methods 

Urban centre spatial extents were defined by the Global Human Settlement (GHS) program of the European 

commission.165 The GHS uses remote sensing and demographic data to define more than 10,000 urban centres 

worldwide. Urban centres chosen for the indicator were identified as urban centres larger than 500,000 

inhabitants. To include countries with no urban centres that met this threshold, we selected the most populated 

city where possible, giving a final count of 1,041 urban centres and 174 countries. Due to missing data in either 

the GHS or the Normalized Difference Vegetation Index (NDVI) data, 22 countries (mostly small island states) 

were not represented in the analysis. 

Data on population size for all years were collected from the Center for International Earth Science Information 

Network (CIESN, Columbia University), which models the distribution of human population at 30 arc-second 

output resolution.166 

Green space was estimated using the normalized difference vegetation index (NDVI), the most commonly used 

satellite-based vegetation index. NDVI calculates the ratio of the differences between near infrared radiation and 

visible radiation to the sum of these two measures. NDVI values range from -1·0 to 1·0 with values less than 0 

indicating water and values close to 1 indicating high levels of vegetation density.167 For this process, we used 

publicly available data from the Landsat satellite, a joint program of the USGS and NASA.168 Landsat images 

the Earth’s surface at 30-meter resolution approximately every two weeks (~16 days). To account for seasonal 

fluctuations, we computed NDVI for each of the following time periods (with season labels based on the 

northern hemisphere): 

• Winter—December 1 of previous year through February 28 

• Spring—March 1 through May 31 

• Summer—June 1 through August 31 

• Fall—September 1 through November 30 

We did this for four different years: 2015, 2020, 2021, and 2022. In previous iterations of this indicator, 2010 

was also included. However, due to a known equipment malfunction in Landsat7, we have elected to remove 

2010 from this update. Landsat 8 (2015, 2020, 2021) and Landsat 9 (2022) were used to estimate values for the 

included years.  For each year and city, a total of four exposure metrics were calculated: peak NDVI (maximum 

NDVI across the four seasons); annual mean NDVI based on the four-season average NDVI; population-

weighted average peak NDVI; and population-weighted mean NDVI. The population weighted NDVI was 

computed for each city by multiplying each NDVI value (peak and four-season average) by the population size 
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of the corresponding year within the same 1x1 km raster, summing up over the weighted values within the urban 

extent, and dividing by the sum of the weights, as shown by the equation below: 

 

∑ (𝑁𝐷𝑉𝐼𝑖 ∗ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖)𝑛
𝑖=1

∑ (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖)𝑛
𝑖=1

 

 

Additional analyses include subsetting the data by levels of the Human Development Index (HDI, see Figure 1), 

climate regions as defined by the Köppen Climate Classification System (see Figure 2), Lancet Countdown 

regional country groupings, and WHO region.169 Google Earth Engine was used to generate raw data and the R 

Statistical Software was used for data analysis and management and to compute the four metrics described 

above. ‘Level of Greenness’ was defined according to the table below: 

Table 33 Categorization of Greenness Levels 

Level of Greenness Population-Weighted Peak NDVI 

Exceptionally Low <0·20 

Very low 0·20-0·29 

Low 0·30-0·39 

Moderate 0·40-0·49 

High 0·50-0·59 

Very High 0·60-0·69 

Exceptionally High ≥0·70 

 

Data 

1. Global Human Settlement Programme of the European Commission (GHS) used to identify 

urban centres.165 

2. Population size identified from NASA GPWv4.170 

3. Satellite data were downloaded from the publicly available Landsat satellite, a joint program 

of the US Geological Survey and NASA.168 

4. Global climate regions from the Köppen Climate Classification System.169 

 

Caveats 

This approach has some limitations. First, although satellite-based measures of vegetation have been used 

extensively to measure greenness, NDVI does not provide information on the quality of greenness (e.g., curated 

park vs vacant lot), the type of green space (e.g., park vs. forest), the type of vegetation (e.g., shrubs vs. trees) or 

social characteristics (e.g., level of security). However, studies have demonstrated that NDVI performs 

adequately when compared with environmental psychologists’ evaluations of green spaces.171 In addition, 

reviews of the literature on greenness and health have been undertaken and found consistent and strong evidence 

of associations of higher greenness measured by NDVI, with improvements in birthweights, physical activity, 

lower mortality rates, and lower levels of depression.172 Second, missing values from GHS or from Landsat data 

due to cloud cover or other factors limit the generalizability of the findings. 

Future form of indicator 

Future versions of this indicator will continue to examine trends over time and will aim to estimate the 

proportion of each city that is green space, in addition to the overall average greenness of an urban centre and 
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we are considering the addition of urban blue space. We will also explore options to integrate the greenness 

indicator with other indicators to investigate the associations between urban green space and multiple measures, 

including heat-related exposures and health effects, exposure of vulnerable populations, and loss of physical 

activity and/or labour capacity. 

 

Additional analysis 

Table 34 Global percent moderate or above (population-weighted average peak-season NDVI ≥ 0.40) 

Year % > Moderate 

Greenness 

2015 28% 

2020 28% 

2021 27% 

2022 27% 

 

Table 35 Global average population-weighted peak-season NDVI 

Year Pop-weighted average 

peak-season NDVI 

2015 0.34 

2020 0.34 

2021 0.34 

2022 0.34 

 

Table 36 Population-weighted peak-season NDVI by HDI 

HDI-level  2015 2020 2021 2022 

Low  0.31 0.30 0.29 0.29 

Medium  0.37 0.37 0.37 0.37 

High  0.31 0.32 0.31 0.32 

Very High  0.36 0.36 0.35 0.35 

 

 

Table 37 Population-weighted peak-season NDVI by climate region 

Climate Region 2015 2020 2021 2022 

Arid 0.24 0.25 0.24 0.24 

Continental 0.37 0.39 0.38 0.38 

Polar 0.14 0.13 0.13 0.14 

Temperate 0.35 0.35 0.35 0.35 
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Tropical 0.39 0.38 0.38 0.38 

 

 

Table 38 Population-weighted peak-season NDVI by WHO region 

WHO Region 2015 2020 2021 2022 

African 0.33 0.32 0.32 0.31 

Americas 0.34 0.34 0.33 0.34 

E Mediterranean 0.22 0.22 0.21 0.20 

European 0.37 0.37 0.37 0.37 

SE Asian 0.40 0.40 0.41 0.40 

W Pacific 0.31 0.32 0.31 0.32 

 

 

Table 39 Percent moderate or above by HDI (population-weighted average peak-season NDVI ≥0.40) 

HDI-level 2015 2020 2021 2022 

Low 18% 18% 15% 13% 

Medium 37% 36% 40% 36% 

High 17% 17% 16% 18% 

Very High 37% 38% 33% 36% 

 

Table 40 Climate region percent moderate or above (population-weighted average peak-season NDVI 

≥0.40) 

Climate Region 2015 2020 2021 2022 

Arid 4% 5% 6% 5% 

Continental 48% 44% 43% 51% 

Polar 0% 0% 0% 0% 

Temperate 28% 27% 26% 24% 

Tropical 39% 42% 40% 40% 

 

Table 41 Percent moderate or above by WHO region (population-weighted average peak-season NDVI 

≥0.40) 

WHO Region 2015 2020 2021 2022 

African 21% 20% 18% 18% 

Americas 28% 28% 25% 25% 

E Mediterranean 5% 6% 5% 4% 
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European 44% 45% 40% 44% 

SE Asian 47% 46% 49% 45% 

W Pacific 9% 8% 8% 11% 

 

Table 42 Percent moderate or above by Lancet Countdown region (population-weighted average peak-

season NDVI ≥0.40) 

LCD Region 2015 2020 2021 2022 

African 17% 16% 15% 14% 

Asia 24% 24% 25% 24% 

European 55% 56% 50% 55% 

North American 60% 58% 49% 51% 

Oceania 17% 0% 0% 17% 

SIDS 27% 41% 45% 50% 

South/Central America 12% 11% 13% 11% 

 

Table 43 Estimates of Urban Green Space by HDI (2015) 

HDI-level Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

Low 0.32 0.26 0.31 0.25 

Medium 0.38 0.31 0.37 0.31 

High 0.34 0.27 0.31 0.25 

Very High 0.37 0.29 0.36 0.28 

Global Mean 0.35 0.29 0.34 0.27 
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Table 44 Estimates of Urban Green Space by HDI (2020) 

HDI-level Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

Low 0.31 0.26 0.30 0.25 

Medium 0.38 0.32 0.37 0.31 

High 0.35 0.28 0.32 0.25 

Very High 0.36 0.29 0.36 0.28 

Global Mean 0.35 0.29 0.34 0.27 

 

Table 45 Estimates of Urban Green Space by HDI (2021) 

HDI-level Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

Low 0.31 0.25 0.30 0.24 

Medium 0.38 0.31 0.37 0.30 

High 0.34 0.27 0.31 0.25 

Very High 0.36 0.28 0.35 0.27 

Global Mean 0.36 0.28 0.35 0.27 

 

Table 46 Estimates of Urban Green Space by HDI (2022) 

HDI-level Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

Low 0.30 0.25 0.29 0.24 

Medium 0.37 0.31 0.37 0.30 

High 0.34 0.28 0.32 0.26 

Very High 0.36 0.28 0.35 0.27 

Global Mean 0.35 0.28 0.34 0.27 

 

Table 47 Estimates of Urban Green Space by Climate Region (2015) 

Climate Region Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

Arid 0.25 0.21 0.24 0.20 

Continental 0.38 0.26 0.37 0.25 

Polar 0.17 0.14 0.14 0.12 

Temperate 0.37 0.30 0.35 0.28 

Tropical 0.41 0.35 0.39 0.33 
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Table 48 Estimates of Urban Green Space by Climate Region (2020) 

Climate Region Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

Arid 0.26 0.21 0.25 0.20 

Continental 0.40 0.27 0.39 0.26 

Polar 0.15 0.13 0.13 0.11 

Temperate 0.36 0.30 0.35 0.29 

Tropical 0.40 0.35 0.39 0.33 

 

Table 49 Estimates of Urban Green Space by Climate Region (2021) 

Climate Region Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

Arid 0.25 0.21 0.24 0.20 

Continental 0.39 0.26 0.38 0.25 

Polar 0.16 0.12 0.13 0.10 

Temperate 0.36 0.29 0.35 0.28 

Tropical 0.40 0.34 0.38 0.33 

 

Table 50 Estimates of Urban Green Space by Climate Region (2022) 

Climate Region Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

Arid 0.25 0.21 0.24 0.20 

Continental 0.39 0.27 0.38 0.26 

Polar 0.17 0.13 0.14 0.11 

Temperate 0.36 0.30 0.35 0.28 

Tropical 0.40 0.34 0.38 0.33 

 

Table 51 Estimates of Urban Green Space by WHO region (2015) 

WHO Region Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

African 0.35 0.28 0.33 0.26 

Americas 0.36 0.31 0.34 0.29 

E Mediterranean 0.23 0.20 0.22 0.19 

European 0.38 0.29 0.37 0.28 

SE Asian 0.41 0.34 0.41 0.34 

W Pacific 0.33 0.25 0.30 0.23 
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Table 52 Estimates of Urban Green Space by WHO region (2020) 

WHO Region Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

African 0.34 0.27 0.32 0.26 

Americas 0.36 0.30 0.34 0.29 

E Mediterranean 0.23 0.20 0.22 0.19 

European 0.38 0.29 0.37 0.28 

SE Asian 0.41 0.35 0.40 0.34 

W Pacific 0.34 0.26 0.32 0.24 

 

 

Table 53 Estimates of Urban Green Space by WHO region (2021) 

WHO Region Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

African 0.33 0.27 0.32 0.25 

Americas 0.36 0.30 0.33 0.28 

E Mediterranean 0.22 0.19 0.21 0.18 

European 0.38 0.28 0.37 0.27 

SE Asian 0.41 0.34 0.41 0.33 

W Pacific 0.33 0.26 0.31 0.24 

 

Table 54 Estimates of Urban Green Space by WHO region (2022) 

WHO Region Peak NDVI Four-season 

NDVI 

Pop. weighted 

Peak NDVI 

Pop. weighted Four-

season NDVI 

African 0.33 0.27 0.31 0.25 

Americas 0.36 0.30 0.34 0.28 

E Mediterranean 0.22 0.19 0.20 0.17 

European 0.38 0.28 0.37 0.28 

SE Asian 0.41 0.34 0.40 0.33 

W Pacific 0.34 0.26 0.32 0.25 

 

Table 55 Estimates of Urban Green Space by LCD region (2015) 

LCD Region Peak  

NDVI 

Four-season 

NDVI 

Pop. weighted Peak 

NDVI 

Pop. weighted 

Four-season 

NDVI 

Africa 0.33 0.27 0.31 0.25 
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Asia 0.35 0.28 0.34 0.27 

Europe 0.41 0.30 0.40 0.29 

Northern America 0.40 0.32 0.39 0.32 

Oceania 0.34 0.31 0.35 0.31 

SIDS 0.38 0.34 0.38 0.33 

South & Central America 0.34 0.30 0.31 0.27 

 

Table 56 Estimates of Urban Green Space by LCD region (2020) 

LCD Region Peak  

NDVI 

Four-season 

NDVI 

Pop. weighted Peak 

NDVI 

Pop. weighted 

Four-season 

NDVI 

Africa 0.32 0.26 0.30 0.24 

Asia 0.35 0.29 0.34 0.28 

Europe 0.41 0.31 0.40 0.29 

Northern America 0.40 0.31 0.40 0.31 

Oceania 0.33 0.30 0.33 0.30 

SIDS 0.39 0.34 0.38 0.33 

South & Central America 0.33 0.29 0.30 0.26 

 

Table 57 Estimates of Urban Green Space by LCD region (2021) 

LCD Region Peak  

NDVI 

Four-season 

NDVI 

Pop. weighted Peak 

NDVI 

Pop. weighted 

Four-season 

NDVI 

Africa 0.31 0.26 0.29 0.24 

Asia 0.35 0.28 0.34 0.27 

Europe 0.41 0.30 0.40 0.29 

Northern America 0.38 0.31 0.38 0.30 

Oceania 0.35 0.32 0.35 0.32 

SIDS 0.38 0.35 0.38 0.34 

South & Central America 0.33 0.29 0.30 0.26 

 

Table 58 Estimates of Urban Green Space by LCD region (2022) 

LCD Region Peak  

NDVI 

Four-season 

NDVI 

Pop. weighted Peak 

NDVI 

Pop. weighted 

Four-season 

NDVI 

Africa 0.31 0.26 0.29 0.24 
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Asia 0.35 0.28 0.34 0.27 

Europe 0.40 0.30 0.39 0.29 

Northern America 0.29 0.31 0.39 0.31 

Oceania 0.34 0.31 0.34 0.31 

SIDS 0.39 0.35 0.38 0.34 

South & Central America 0.33 0.29 0.30 0.26 
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Figure 76 Köppen Climate Regions. Designated climate regions of the world using the Köppen Climate 

Zones system 

 

 

 

 

 

Figure 77 Country Development Level. Development level as denoted by the Human Development Index 

or HDI. 

 

 



123 

 

 

Figure 78 Urban greenness in 1,041 urban centres in 2022. 

 

 

 

Figure 79 Urban greenness in 1,041 urban centres in 2022. Levels of urban greenness were quantified on 

the basis of mean population-weighted peak-season normalized difference vegetation index (NDVI). The 

NDVI is a standard, satellite-based measurement used to estimate vegetation on a scale of -1.0 to 1.0 
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Figure 80 Temporal changes in urban greenness. Levels of urban greenness change between 2015, 2020, 

2021, 2022 
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Figure 81 Mean, population-weighted, peak-season NDVI by climate region and year 

 

 

 

  



126 

 

 

Figure 82 Mean, population-weighted, peak-season NDVI by HDI and year 

 

Figure 83 Mean, population-weighted, peak-season NDVI by WHO region and year. 
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Figure 84 Mean, population-weighted, peak-season NDVI by Lancet Countdown Region designation and 

year. 

Indicator 2.2.4: Global Multilateral Funding for Health Adaptation Programs    

Indicator authors 

Carole Green 

Methods  

1. Data Collection:  

a. Data Collection on Funding Approved for Adaptation and Cross-Cutting Projects:  

Data were collected from PDF files of Project Approval Documents, accessed via the GCF Project Portfolio, 

and collated into a spreadsheet. 

The GCF Project Portfolio is accessible online from the GCF Website following the Prompts: 

https://www.greenclimate.fund/ > Projects & Programmes > Lists of Projects. The filter functionality was used 

to filter projects by ‘Theme’ [Adaptation] or [Cross-Cutting] and ‘Date’ [2022]. 

PDF files of the Project Approval Documents were downloaded from each of the relevant filtered projects, 

reviewed individually, and key data points were transferred into a spreadsheet, including: 

• Project Reference Number 

• Project Name 

• Project Region 

• Total GCF Financing 

• GCF Financing Instrument (Concessional Loan, Grant, Equity, Guarantee)  

• Percentage of Financing for Adaptation Elements of the Project, outlined in section A.4 Result Area(s) 

• Percentage of Finance for ‘Health, Food, and Water Security’ Elements of the Project, outlined in 

section A.4 Result Area(s) 

• Project objective described in Section B.3. Project/Programme Description of the Project Approval 

Document 
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• Presence of GCF Outcome A2.0: Increased resilience of health and wellbeing within the Logical 

Framework of the Project Approval Document 

 

b. Other Data Collected for Additional Analysis  

In addition to the two sub-indicators above, data were collected on projects which received approval for Project 

Preparation Funding in 2022, and projects which received approval for Readiness Support in 2022. The 

methodology for collection of these additional data corresponds to the methodology for the collection of data on 

Concept Notes, with the slight change that the project ‘Type’ filter was adjusted for the respective types of 

document. 

2.    Financing for adaptation elements for each of these projects was calculated as:  

Financing for Adaptation Elements per Project = “Total GCF Financing Approved” * “Percentage of 

Financing for Adaptation Elements” in section  A.4 Result Area(s) 

Calculating GCF Funding Approved for Adaptation Projects with Health Co-Benefits 

• Had funding approved in 2022 AND 

• Had >0% financing approved for Adaptation Elements in section A.4 Result Area(s) of the Approved 

Funding Proposal, consequently either representing ‘Adaptation’ projects of ‘Cross-Cutting’ Projects 

AND 

• Had elaborated a metric for GCF Outcome A2.0: Increased resilience of health and wellbeing within 

the Logical Framework of the Project Approval Document AND 

• Had indicated GCF Contribution towards Increased Resilience of Health and well-being, and food and 

water security in section A.4 Result Area(s) AND 

Funding directed towards Health Co-Benefits for adaptation elements of these projects was calculated as: 

Financing for Health Co-Benefits of Adaptation Elements per Project = “Total GCF Financing 

Approved” * “Percentage of Financing for Adaptation Elements” in section  A.4 Result Area(s) * 

“Percentage of Financing for Increased Resilience of Health and well-being, and food and water 

security in section A.4 Result Area(s)” 

Funding directed towards health system adaptation elements of these projects was calculated as: 

Financing for Health System Adaptation per Project = “Total GCF Financing Approved” * “Percentage 

of Financing for Adaptation Elements” in section  A.4 Result Area(s) * “Percentage of Financing for 

Increased Resilience of Health and well-being, and food and water security in section A.4 Result 

Area(s)” 

Total GCF Funding Approved for Adaptation Projects with Health Co-Benefits represented the sum of 

Financing for Health System Adaptation per Project. 

 

Data 

This indicator used data from the Green Climate Fund (GCF https://www.greenclimate.fund/) and the Climate 

Funds Update (CFU http://www.climatefundsupdate.org) data dashboard. 

Caveats 

This indicator provides in-depth analysis of funding approved by the GCF in 2022 for Health Adaptation 

projects. While this likely represents a good indicator of Climate Change funding trends for multilateral 

financing, it is possible that other Funds show a different trend. Moreover, this indicator is limited through 

reliance on manual data-transfer from the GCF website into a spreadsheet. 

Future Form of the Indicator  
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In future years, the ambition is to work with Climate Change funds, starting with the Green Climate Fund, to 

consistently collect data on funding approved for Health Adaption which will improve the data quality of this 

indicator. 

Indicator 2.2.5: Detection, Preparedness, and Response to Health Emergencies 

Indicator authors 

Diarmid Campbell-Lendrum, Tara Neville Methods 

This indicator takes data from the International Health Regulations (IHR (2005)) State Party Self-Assessment 

Annual Reporting Tool (SPAR). Data reported here were updated on April 28, 2023. Under the IHR (2005) all 

States Parties are required to have or to develop minimum core public health capacities to implement the IHR 

(2005) effectively. IHR (2005) also states that all States Parties should report to the World Health Assembly 

annually on the implementation of IHR (2005). In order to facilitate this process, WHO developed an IHR 

Monitoring questionnaire, interpreting the Core Capacity Requirements in Annex 1 of IHR (2005) into 20 

indicators for 13 capacities. Since 2010, this self-reporting IHR monitoring questionnaire is sent annually to 

National IHR Focal Points (NFPs) for data collection. It contains a checklist of 20 indicators specifically 

developed for monitoring the development and implementation of 13 IHR capacities. The method of estimation 

calculates the proportion/percentage of attributes (a set of specific elements or functions which reflect the level 

of performance or achievement of a specific indicator) reported to be in place in a country.  

The core capacities to implement the IHR (2005) have been established by a technical group of experts, as those 

capacities required to detect, assess, notify, and report events, and to respond to public health risks and 

emergencies of national and international concern. To assess the development and strengthening of core 

capacities, a set of components are measured for each of the core capacities, by considering a set of one to three 

indicators that measure the status and progress in developing and strengthening the IHR core capacities. Each 

indicator is assessed by using a group of specific elements referred to as ‘attributes’ that represents a complex 

set of activities or elements required to carry out this component. The annual questionnaire has been conducted 

since 2010 with a response rate of 72% in 2012, 66% in 2016 and 85% in 2017, and 100% of countries reporting 

at least once since 2010. Annual reporting results are complemented by after action reviews, exercises, and joint 

external evaluation (JEE).  

At the beginning of 2018, in compliance with the recommendations of the IHR Review Committee on Second 

Extensions for Establishing National Public Health Capacities and on IHR Implementation and following formal 

global consultations with States Parties held in 2015, 2016, and 2017, and 2018, the WHO Secretariat replaced 

the IHR Monitoring questionnaire by the “IHR State Party Self-assessment Annual Reporting (SPAR) Tool”.  

Between 2018 and 2020,  the SPAR tool provided results for IHR core capacity 8 (C8), National Health 

Emergency Framework. This core capacity had 3 indicators C8.1 Planning for emergency preparedness and 

response mechanism, C8.2 Management of health emergency response operations, and C8.3 Emergency 

resource mobilization. However, adjustments were made in the SPAR tool in 2021. In 2021, core capacity 7 

(C7) Health Emergency Management, reported on three indictors: C.7.1 planning for health emergencies, C.7.2 

management of health emergency response, and C.7.3 emergency logistic and supply chain management. The 

indicator C8.3 no longer exists in this eSPAR version 2. This makes C.7 Health emergency management in 

version 2 incomparable with C8 version 1. Therefore, findings in the 2023 Lancet Countdown Report cannot be 

compared to findings in the 2021 or earlier reports.  

The SPAR tool scoring system, has remained the same since 2018. It is summarized in the table below. 

 

 

Table 59: SPAR tool scoring system of IHR core capacities 

 

Scoring System 
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Indicator Level Score Score Range Color 

1 20 0-20        

2 40 21-49  

3 60 41-60  

4 80 61-80  

5 100 81-100  

 

 

Table 61 details the Lancet Countdown classification of level of implementation of core capacity 7 of the IHR 

SPAR tool. This follows the same classification as in the 2022 report. 

Scoring System 

Indicator Level Score Score Range Color 2022 Lancet Countdown 

classification of level of 

implementation 

1 20 0-20        Very low 

2 40 21-49  Low  

3 60 41-60  Medium 

4 80 61-80  High  

5 100 81-100  Very high  

Table 60 Lancet Countdown classification of level of implementation of core capacity 7 of the IHR SPAR 

tool. 

A total of 185 State Parties had reported to the Sepf-Assessment Annual Reporting Tool as of April 28, 2023. 

State Parties that did not have an HDI classification were removed from the analysis (5 countries). This left a 

total of 180 countries included in the findings.  

The Strategic Partnership for Health Security and Emergency Preparedness Portal tracks progress and gaps in 

IHR implementation through independent external evaluations, simulations, after-review exercises, and the 

development of national action plans for health security and resource mapping. 

 

Data  

1. International Health Regulations (2005) Annual Reporting. Data is available through the 

Global Health Observatory Data Repository for 2010–2017, and through the electronic IHR 

State Parties Self-Assessment Annual reporting Tool (e-SPAR) for 2022.173 

https://extranet.who.int/e-spar.  

2. World Health Organization. Strategic Partnership for Health Security and Emergency 

Preparedness (SPH) Portal. World Health Organization. https://extranet.who.int/sph/.174 

 

Caveats  

There are some limitations to considering these capacities as proxies of health system adaptive capacity and 

system resilience. Most importantly, IHR monitoring questionnaire responses are self-reported. Secondly, the 

countries that report IHR implementation differ from year to year within these regional aggregate scores. 

https://extranet.who.int/e-spar
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Thirdly, IHR Core Capacity Requirements are not specific to climate change, and hence whilst they provide a 

proxy baseline, they do not directly measure a country’s adaptive capacity in relation to climate driven risk 

changes. Fourthly, these findings capture potential capacity – not action. Finally, the quality of surveillance for 

early detection and warning is not shown and neither is the impact of that surveillance on public health. 

Response systems have been inadequate in numerous public health emergencies and thus the presence of such 

plans is not a proxy for their effectiveness. Nevertheless, these capacities provide a useful starting point to 

consider the potential adaptive capacity of health systems globally.  

Future form of the indicator  

The World Health Assembly resolution WHA73.1 requested the WHO Director-General to initiate a process of 

impartial, independent and comprehensive evaluation of the WHO-coordinated international health response to 

COVID-19, including the mechanisms in place under the IHR. Future forms of this indicator will need to evolve 

along with the outputs of this review. 

 

2.3: Vulnerabilities, Health Risk, and Resilience to Climate Change 

Indicator 2.3.1: Vulnerability to Mosquito-Borne Diseases    

Indicator authors 

Prof Jan C. Semenza, Marisol Yglesias González 

Methods  

This indicator tracks the vulnerability of countries to severe adverse health outcomes from Aedes-borne diseases 

(Dengue, Chikungunya and Zika) considering urban population (UP) as a susceptibility variable and health care 

access and quality (HCAQ) as a coping capacity variable. The results are aggregated by WHO, UNDG human 

development index (HDI) and Lancet Countdown grouping. For the analysis, the period of consideration ranges 

from 1990 to 2021. 

Vulnerability is computed by dividing the percentage of UP scaled from 1 to 100, by the percentage of a proxy of 

HCAQ scaled 1 – 100. HCAQ results from the subtraction of 100 - % of deaths by communicable diseases and 

maternal, prenatal and nutrition conditions obtained the Global Burden of Disease Study 2019. The results have 

been scaled to display a vulnerability indicator that ranges from 0 to 100. 

𝑽𝒖𝒍𝒏𝒆𝒓𝒂𝒃𝒊𝒍𝒊𝒕𝒚 = 𝑼𝑷/ 𝑯𝑪𝑨𝑸 

 

Data 

1. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 

(GBD 2019) Reference Life Table. Seattle, United States of America: Institute for Health 

Metrics and Evaluation (IHME), 2021 

2. World Bank, World Development Indicators. Urban population (% of total population). 

Available from: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS 

Caveats 

HCAQ values have been updated for 2020 and 2021 by extrapolating 2019 data from the Global Burden of Disease 

Study 2019. The indicator is extrapolated to country level, no estimations at subnational level to differentiate 

vulnerability between rural and urban settings have been done. Countries that reported a high value of vulnerability 

(Ivory Coast, Zambia and Zimbabwe) showed an influence lifting the vulnerability average for the other countries, 

therefore affecting the results for WHO regions and HDI groups too. In that case, these countries were excluded 

from the analysis to avoid misleading results.  
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Future form of the indicator  

An improved version of this indicator will be developed in the future, incorporating other factors linked to 

vulnerability to dengue in the literature. 

337,338333332,339334332340339341–343327329,330,339342344345346328–

330347348333,339333345347348349350351352353354355354356357358172172,359360354361362363360362,363364365366367368369369370371,372364 

Additional analysis 

 

Figure 85: Global scaled vulnerability to mosquito-borne disease, by HDI, from 1990 to 2021. 

  

 

Figure 86: Global scaled vulnerability to mosquito-borne disease, by WHO region, from 1990 to 2021. 
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Figure 87: Global scaled vulnerability to mosquito-borne disease, by LC region, from 1990 to 2021. 

 

Indicator 2.3.2: Lethality of Extreme Weather Events    

Indicator authors 

Prof Dominic Kniveton 

Methods  

The methodology for this indicator remains similar to that described in the 2020 report of the Lancet 

Countdown.175 The number of occurrences of weather-related disasters (drought, storms, wildfires, floods and 

extreme temperatures), the number of people affected in each disaster, and the lethality of these events have 

however been grouped according to the 2019 HDI level for each country over the period from 1990 to 2020.  

The methodology uses data from the Centre for Research on the Epidemiology of Disasters (EM-DAT).176 Here, 

deaths, as proxy of the lethality of weather-related disasters, are defined as the number of people who lost their 

life because the disaster happened. People affected are defined as those requiring immediate assistance during a 

period of emergency; hence requiring basic survival needs such as food, water, shelter, sanitation, and 

immediate medical assistance.  

Data  

1. EM-DAT at the Centre for Research on the Epidemiology of Disasters (CRED) at the 

Université Catholique de Louvain, Belgium176 

2. Human Development Index (HDI) at the United Nations Development Programme, Human 

Development Reports177 

Caveats  

The EM-DAT database contains a number of possible biases. Firstly, there is a possible bias in missing some 

disaster events because of under-reporting. EM-DAT classifies an event as a disaster if 10 or more people die; 

100 or more people are affected; there is a declaration of a state of emergency; or a call for international 
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assistance. Similarly, there are likely biases in how countries report both the number of deaths and people 

affected. Numbers of deaths for example may not include mortality from the cascading risks of natural hazards 

or those that occur as a result of longer causal chains from the hazard. Secondly, estimates of the numbers of 

people affected have different biases for different countries because of how the concept of “affected people” is 

defined. This must be considered when comparing countries. 

Additional Analysis  
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Figure 88 Number of People Killed by Disasters Involving a Drought as a Percentage of Those Affected 

 

Figure 89 Number of People Killed by Disasters Involving a Drought in Asia as a Percentage of Those 

Affected 
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Figure 90 Number of People Killed by Disasters Involving Floods as a Percentage of Those Affected 

 

Figure 91 Number of People Killed by Disasters Involving Floods In Africa as a Percentage of Those 

Affected 
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Figure 92 Number of People Killed by Disasters Involving Storms in Oceania as a Percentage of Those 

Affected 

 

Indicator 2.3.3: Migration, Displacement and Rising Sea Levels 

Population exposure to global mean sea level rise 

Indicator authors 

Dr Sonja Ayeb-Karlsson, Dr Shouro Dasgupta, Prof Ilan Kelman, Prof Celia McMichael 

Methods  

The methodology for this indicator remains similar to that described in the 2022 report of the Lancet Countdown.41 

By using a bathtub model, this indicator overlays future Global Mean Sea Level Rise (GMSLR) of 1 m with 

coastal elevation value grid-cells to delineate areas of potential inundation and current global population 

distribution grid-cells to delineate populations living in areas exposed to absolute GMSLR of 1 m. 

In the first step, the Coastal Digital Elevation Model (CoastalDEM) dataset was used to categorise inundated grid-

cells under 1m of GMSLR.178 In the second step a gridded population dataset 179 was overlaid to estimate 

population exposure values. These grid-cells were then matched with country boundaries using the Global 

Administrative Areas (GADM) Dataset (version 4.0.4). Then the grid-cell level data were aggregated to country 

level (i.e. national population numbers exposed to 1m of GMSLR).  

Data  

1. GMSLR: Estimated global mean increases in sea-levels180 

2. Elevation: Coastal Digital Elevation Model (CoastalDEM)178  

3. Hybrid gridded demographic data for the world 179 

4. Global Administrative Areas (GADM) version 4.0.4, http://www.gadm.org/ 

 

Caveats  

The global mean sea level rose 4.68 mm per year between 2013-2022181 and is projected to reach 0·29–1·10 m by 

2100 (relative to 1986–2005), depending on emission scenarios and environmental responses.182–184 Due to 

uncertainty in the Greenland and Antarctic ice sheet melt processes, GMSLR of 2 m by 2100, 5 m by 2150 and 

15 m by 2300 under very high greenhouse gas emission scenarios cannot be ruled out.185,186   
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Estimates of population exposure to GMSLR vary according to datasets, timeframes, emissions and 

socioeconomic scenarios, and analytical method.187 For this indicator, the datasets used, and analytical approach 

determine results. CoastalDEM (3-arc second; 90m) is a global coastal digital elevation model that is adjusted to 

reduce SRTM error.182 While SLR-related hazards could potentially displace people living in sites of coastal risk, 

population exposure to SLR is not a proxy indicator for SLR-related population displacement. Displacement can 

be prevented or forestalled through protection (e.g., armouring coasts) and accommodation (e.g. measures that 

facilitate living with SLR impacts); some may be unable or unwilling to leave; and people migrate into low-lying 

coastal sites.188 When protection and accommodation are exhausted or not feasible, retreat from sites of SLR-

related risk may occur.  

 

SLR and associated flooding and erosion can contribute to health risks including saltwater intrusion of drinking 

water, food insecurity (e.g., loss or arable land, reduced crop yields), altered infectious disease ecology, and mental 

health impacts.189–191 Empirical studies identify diverse consequences of relocation and retreat from sites of coastal 

risk, including for mental health, food security, water supply, sanitation, infectious diseases, injury, and health 

care access.192,193  

Future form of the indicator 

Plans to improve the methodology, data sources, and/or temporal and geographical coverage of this indicator in 

subsequent reports. As new, higher spatial resolution and more precise datasets become available, we will update 

our methods to produce robust estimates of population exposure to future GMSLR. 

Additional analysis 

 

Figure 93 Population exposure to 1m GMSLR 

 

National Policies on Migration 

Methods 

This component of this indicator on national policies reports: 

1a. The number of currently valid national-level policies including legislation for migrants, migration, 

displacement, displaced people, relocation, and relocated people specifically related to climate change (not 

climate or disasters), including immobility (trapped populations/non-migration/non-displacement). 

1b. The number of such policies mentioning health or well-being along with a qualitative analysis of how health 

and/or well-being are/is mentioned. 

2a. The number of countries with at least one such policy. 

2b. The number of such countries whose policies mention health or well-being along with a qualitative 

discussion of how health or well-being is mentioned. 

“Country” refers sovereign state or autonomous non-sovereign territory (not just a sub-national jurisdiction). 

Multi-lateral, inter-governmental, and international policies are specifically excluded. Explicit mentions of 

“climate change” and “health” or “well-being” must be present, not implied definitions or references to wider 
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contexts which might (or might not) encompass these points, e.g., “climate”, “climate disasters”, “humanitarian”, 

and “environment”. 

 

The method for identifying national-level policies is: 

1. A systematic review, using the keywords which define the indicator 

2. Crowd-sourcing and expert queries194 

Because this search can never know what might have been missed, the numbers reported for this indicator 

represent minimum counts. Each policy included is also categorised by: 

1. (a) Migration/mobility/displacement/relocation from a location,  

    (b) migration/mobility/displacement/relocation to a location, and  

    (c) immobility/trapped populations. 

2. (a) Domestic migration/mobility/displacement/relocation and  

    (b) international migration/mobility/displacement/relocation — all immobility, by definition, is domestic 

A given policy might be counted in more than one category for 1abc and for 2ab. Some policies do not have an 

end date, and some do, with both included. Policies which are now out-of-date are retained in a separate list as 

well as a list of policies considered but not included in this indicator. 

Caveats  

As documented in previous Lancet Countdown reports41,175,195–197 and supporting publications,198 the main caveats 

with using migration or displacement as a climate change and health indicator are:  

 

1. Attributing movement or immobility to climate change or climate change impacts is not straightforward. 

 

2. Attributing health outcomes to movement or immobility is not straightforward. 

 

These two attribution relationships are debated whether or not (i) there are or will be links between climate change 

and migration, displacement, (im)mobility, relocation and (ii) there are or will be links between migration, 

displacement, (im)mobility, relocation and health/well-being.  

However, there is a growing body of research that indicates climate change and extreme weather conditions, 

events and variability contribute to human migration and displacement, albeit strongly influenced by economic, 

social, political and demographic processes.199  

 

This indicator assists in overcoming the attribution problem by: 

1. Examining written policies, so attribution is not a concern, because the policies exist, even if attribution 

is inappropriate. 

2. Examining how policies mention health/well-being, so again actual attribution is not a concern, because 

the text on health or well-being either exists or does not exist, even if attribution is inappropriate. 

 

If spurious attributions are made in the policies between (i) climate change and 

migration/displacement/immobility or (ii) migration/displacement/immobility and health or well-being, then this 

indicator can analyse those attributions and why they might not be defensible, based on the scientific literature. 

Thus, this indicator provides what is happening at the national level and the appropriateness of these policies in 

terms of the scientific literature. The key to this approach and to overcoming the caveats is keeping the indicator 

simple and straightforward, which is why the indicator has been designed in the proposed manner. 

 

Selecting policies, and in particular national policies, does not cover all possibilities, but it serves as an indicator. 

As well, it is an indicator of how national governments perceive the climate change / (im)mobility / health links, 

without making a statement on the actual links, which the literature explains is exceptionally difficult. This 

approach to the indicator also means that misattributions are easily filtered out, such as reporting migration and 

health links to disasters or climate, both of which are different from links to climate change. Using ‘climate 

change’ synonymously with ‘climate’, ‘climate-related disasters’, and/or ‘disasters’, is a common mistake in many 

policies reviewed as well as in the academic literature. 

 

The main caveat is that most of the data is confined to documents in English, with a few other languages on 

occasion. The advantage is that policies which are not available in English have typically been discussed in 

English publications, including blogs and news reports, suggesting that much relevant material has been captured. 
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Nonetheless, the numbers reported can only be taken as the minimum, as in ‘at least so many’ policies match the 

criteria stated. One minor caveat is that the number of countries sometimes changes year-to-year, providing a 

different baseline. These changes are rarely more than one or two countries per year out of a sample of around 

200. Substantial changes to the numbers of countries will be reported if this occurs. 

 

Future Form of the Indicator  

Plans to improve the methodology, data sources, and/or temporal and geographical coverage of this indicator in 

subsequent reports. 

The indicator design helps in overcoming these caveats by reporting that the counts provided must be only 

minimum numbers, because we cannot know what we would have missed. Through publicity, publication, crowd 

sourcing, and expert connections, this limitation will be overcome because people will provide examples of what 

we missed. As an indicator, it is important to accept that the numbers are not comprehensive but provide only 

minimum numbers as a lower-bound baseline. 

Section 3: Mitigation Actions and Health Co-Benefits 

Lead Author: Prof Ian Hamilton 

Research Fellow: Dr Harry Kennard 

Indicator 3.1: Energy Use, Energy Generation, and  Health 

3.1.1: Energy Systems and Health 

Indicator authors 

Dr Harry Kennard, Dr Matthew Winning 

Carbon Intensity of the Energy System 

Methods  

This indicator contains two components: 

• Carbon intensity of the energy system, both at global and regional scales, (1971–2020), in tCO2/TJ 

• Global CO2 emissions from energy combustion by fuel, in GtCO2 (1972–2020). Global emissions 

without fuel breakdown are also provided for 2021 and provisionally for 2022. 

The technical definition is the tonnes of CO₂ emitted for each unit (TJ) of primary energy supplied. 

The rationale for the indicator choice is that carbon intensity of the energy system will provide information on 

the level of fossil fuel use, which has associated air pollution impacts. Higher intensity values indicate a more 

fossil dominated system, and one that is likely to have a higher coal share. As countries pursue climate 

mitigation goals, the carbon intensity is likely to reduce with benefits for air pollution.  

The indicator is calculated based on total CO2 emissions from fossil fuel combustion divided by Total Energy 

Supply (TES). TES reflects the total amount of primary energy used in a specific country, accounting for the 

flow of energy imports and exports.  

The data is available for most countries of the world, for the period 1971–2020. 

Data  

1. This indicator is based on based on the IEA dataset, CO2 Emissions From Fuel Combustion: CO2 

Indicators, accessed via the UK data service,200 and supplemented with additional data for 2022201 

Caveats  
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IEA data are generated using both direct input from national governments and modelling. As such, while they 

represent the best available data on national CO2 emissions from fuel, they are subject to caveats which vary by 

energy commodity and country. Full details are given in the CO2 Emissions From Fuel Combustion 

documentation.202  

 

Figure 94 Carbon intensity of the energy system by WHO region, 1971–2020 (tCO2/TJ) 

 

Coal Phase-Out 

Methods  

Two indicators are used here: 

1. Total primary coal supply by region / country (in exajoules, EJ); 

2. Share of electricity generation from coal (% of total generation from coal) and global generation from 

coal (in TWh) 

These indicators are important to enable tracking of changes in coal consumption at a regional and country 

level. Due to the level of coal used for power generation, a second indicator tracks the contribution to electricity 

generation from coal power plants in selected countries. As countries pursue climate mitigation goals, the use of 

coal is likely to reduce with resulting benefits for air pollution.   

The indicator on primary energy coal supply is an aggregation of all coal types used across all sectors (from the 

IEA energy balances). The data are available for most countries of the world, for the period 1978–2020.  

The indicator on the share of electricity generation from coal is estimated based on electricity generated from 

coal plant as a percentage of total electricity generated. Regional data are available from 1990–2020; pre-1990 

data are not used due to incomplete time series. 

Countries or regions with large levels of coal use (as a share of generation, or in absolute terms), have been 

selected to show in the figures. 
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The following types of coal are added to produce the total primary coal supply: 

‘Anthracite’, ‘Coking coal’, ‘Lignite’, ‘Other bituminous coal’, ‘sub-bituminous coal’ 

Data  

1. This indicator is based on the extended energy balances from the International Energy Agency. The 

specific dataset is called World Extended Energy Balances (for 2022), and is sourced via the UK data 

service203  

Caveats  

IEA data are generated using both direct input from national governments and modelling. As such, they are 

subject to caveats which vary by energy commodity and country. Full details are given in the IEA World Energy 

Balances documentation.204 This documentation also covers changes to methodology in previous editions of 

IEA World Energy Balances. A typical example of the way data can be impacted by methodology updates by 

reporting countries is as follows, relating to Belgium ‘New data on consumption cause breaks in time series for 

primary solid biofuels between 2011 and 2012’. However, since data are aggregated, the impacts on overall 

trends is minimal.  

 

Figure 95 Left: Coal use by WHO region, 1990–2020 (EJ) and right: share of electricity supply provided 

by coal by WHO region, 1990–2020 (%) 

 

Zero-Carbon Emission Electricity 

Methods  

Two indicators are used here, and presented in two ways: 

1. Total low carbon electricity generation, in absolute terms (TWh) and as a % share of total electricity 

generated (to include nuclear, and all renewables); and  



143 

 

2. Total modern renewable generation (wind and solar), in TWh, and as a % share of total electricity 

generated 

The increase in the use of low carbon and renewable energy for electricity generation will push other fossil 

fuels, such as coal, out of the mix over time, resulting in an improvement in air quality, with benefits to health. 

The renewables (wind and solar) indicator has been used to allow for the tracking of rapidly emergent renewable 

technologies. For both indicators, generation, rather than capacity, has been chosen as a metric as the electricity 

generated from these technologies is what actually displaces fossil-based generation. Countries with large levels 

of low carbon generation (as shares, or in absolute terms), or with higher fossil dependency, have been selected. 

The data are taken from the IEA extended energy balances.203 The absolute level indicators are total gross 

electricity generated aggregated from the relevant technology types. The share indicators are estimated as the 

low carbon or renewable generation as a % of total generation. 

The data are available for most countries of the world, for the period 1971–2020. Only the period from 1990 has 

been used, due to data gaps for selected countries prior to 1990. 

The following IEA variable names are added to produce total low carbon electricity generation: 

‘Nuclear, ‘Hydro’, ‘Geothermal’, ‘Solar photovoltaics’, ‘Solar thermal’, ‘Tide, wave and ocean’, ‘Wind’ 

The following IEA variable names are added to produce total modern renewable electricity generation: 

 ‘Geothermal’, ‘Solar photovoltaics’, ‘Solar thermal’, ‘Tide, wave and ocean’, ‘Wind’ 

Data  

1. This indicator is based on the extended energy balances from the International Energy Agency. The 

specific dataset is called World Extended Energy Balances, and is sourced via the UK data service 

(http://stats.ukdataservice.ac.uk/)203 

Caveats  

IEA data are generated using both direct input from national governments and modelling. As such, they are 

subject to caveats which vary by energy commodity and country. Full details are given in the IEA World Energy 

Balances documentation.204 This documentation also covers changes to methodology in previous editions of 

IEA World Energy Balances. A typical example of the way data can be impacted by methodology updates by 

reporting countries is as follows, relating to Belgium ‘New data on consumption cause breaks in time series for 

primary solid biofuels between 2011 and 2012’. However, since data are aggregated, the impacts on overall 

trends is minimal. 

Additional analysis 

http://stats.ukdataservice.ac.uk/)
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Figure 96. Left: Share of total energy supply provided by low carbon energy sources by WHO region, 1990–

2020. Right: Share of electricity generation provided by modern renewables (wind, solar and geothermal) 

by WHO region, 1990–2020 

 

 

Figure 97: Share of electricity generation provided by renewables (wind, solar and geothermal) by HDI 

grouping, 1990–2020 

 

3.1.2: Household Energy Use 

Indicator authors 

Prof Ian Hamilton, Prof Stella Hartinger, Dr Harry Kennard 

Access to clean energy is defined by the IEA (2020) as: 

HDI 
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"a household having reliable and affordable access to both clean cooking facilities and to electricity, which is 

enough to supply a basic bundle of energy services initially, and then an increasing level of electricity over time 

to reach the regional average".205 

The use of energy in the residential sector is drawn from the IEA extended global residential modelling 

produced in the World Energy Outlook from the ‘World Extended Energy Balances’ 2022 edition, which covers 

all countries or major regions in the world.203 The values are measured in EJ and cover all fuels supplied for 

consumption within the residential sector (IEA flow code QGFLOW076) final energy demand.  

The specific IEA variables were combined in the following way: 

`Solid biofuels` = Charcoal + `Primary solid biofuels` 

`Coal, coke and peat` = `Hard coal (if no detail)` + BKB + `Petroleum coke` + `Patent fuel`+`Coke oven 

coke`+`Brown coal (if no detail)`+Peat+`Gas coke`+`Peat products`+`Coking coal`+`Sub-bituminous 

coal`+`Other bituminous coal`+Lignite+Anthracite+Bitumen 

`Other biofuels` = `Other liquid biofuels` + Biogasoline + `Non-specified primary biofuels and 

waste`+`Biogases`+`Biodiesels` 

`Liquid fossil fuels` =`Paraffin waxes`+`Other oil products`+`Naphtha`+ `Gas/diesel oil excl. biofuels` + 

Lubricants + `Natural gas liquids`+ `Other kerosene`+`Liquefied petroleum gases (LPG)`+`Fuel oil`+`Motor 

gasoline excl. biofuels`+`Crude oil` 

`Waste & other` = `Municipal waste (non-renewable)`+`Municipal waste (renewable)`+`Industrial 

waste`+`Refinery gas`+ `Blast furnace gas`+`Gas works gas`+`Coke oven gas`+`Oil shale and oil sands`, 

Finally, Natural gas, Heat, Solar thermal, Geothermal and Electricity variables were provided directly from IEA 

flow QGFLOW076.  

The visualisation accompanying this indicator shows the principal household energy sources by country. The 

full breakdown of the fuels used in these regions is given in Table 61. 

 

Principle household energy 

sources Heat 

Liquid 

fossil 

fuels 

Solid 

biofuels 

Natural 

gas 

Coal, 

coke 

and 

peat Electricity 

Mixed including district heat & 

coal 27.3% 4.2% 18.9% 12.6% 10.9% 25.1% 

Fossil Gas & electricity 4.1% 7.6% 10.5% 52.5% 0.8% 

 

24.5% 

Solid biofuels 0.5% 4.2% 80.9% 2.2% 0.2% 11.8% 

Liquid fossil fuels & electricity, 

some biomass 0.4% 38.2% 16.9% 4.9% 1.1% 36.7% 

Electricity 0.1% 14.2% 9.2% 4.0% 0.3% 70.2% 

Table 61 The mean shares of household energy source by regional type (2019) 

 

Data  

1. Healthy fuels for cooking were provided by the WHO206,207 

2. The additional energy usage and access is based on data from the IEA World Energy Balances 2022203  

Caveats  

The data from the IEA on residential energy flows and energy access provide an indication of both the access to 

electricity and the proportion of the different types of energy used within the residential sector.  These provide 

an important picture on how access and use might be interacting. 
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IEA data are generated using both direct input from national governments and modelling. As such, they are 

subject to caveats which vary by energy commodity and country. Full details are given in the IEA World Energy 

Balances documentation.204 This documentation also covers changes to methodology in previous editions of 

IEA World Energy Balances. A typical example of the way data can be impacted by methodology updates by 

reporting countries is as follows, relating to Belgium ‘New data on consumption cause breaks in time series for 

primary solid biofuels between 2011 and 2012’. However, since data are aggregated here by HDI level, the 

impacts on overall trends is minimal. 

Future form of the indicator  

The WHO are in the process of updating the household energy survey database which underpins this indicator. 

Future forms of the indicator may be able to be coupled more directly with the negative health outcomes related 

to the use of dirty fuels in the home.  
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3.1.3: Sustainable and Healthy Road Transport  

Indicator authors 

Dr Harry Kennard, Dr Melissa Lott 

Methods  

Fuel use data (by fuel type) from the IEA World Extended Energy Balances are divided by corresponding 

population statistics from the United Nations, Department of Economic and Social Affairs, Population Division 

(Figure 94). 

The fuel flows from the IEA are combined in the following way: 

Biofuels = Biodiesels +Biogasoline +Biogases + Other liquid biofuels  

Fossil fuels = Natural gas liquids+Natural gas+Motor gasoline excl. biofuels+Liquefied petroleum gases 

(LPG)+Refinery gas+White spirit & SBP+Kerosene type jet fuel excl. biofuels+Gas/diesel oil excl. 

biofuels+Lubricants+Naphtha+Fuel oil+Other kerosene+Other oil products+Bitumen 

Electricity is given by the existing IEA total. 

Totals for a given year and country are then divided by the corresponding country population, and then summed 

to produce the final estimate. This avoids including the population of the countries that are not covered by the 

IEA. 

Data  

1. Fuel use data is from the IEA, World Extended Energy Balances203 

2. UN Population estimates, 2019 edition208 

Caveats  

This indicator captures change in total fuel use and type of fuel use for transport, but it does not capture shifts in 

modes of transport used. In particular, it does not capture walking and cycling for short trips, which can yield 

substantial health benefits through increased physical activity.209 

Alongside the fossil fuel combustion pollutants, tyre wear accounts for an estimated 3–7% of airborne PM2.5 

particulates worldwide210 

 

Future form of the indicator  

An ideal fuel use indicator would capture the direct health impacts of the use of transport fuels, with country- 

and urban-level specificity within the global coverage. In turn, the co-benefits of transitioning to less-polluting 

fuels would be quantified directly in terms of reduced exposures to air pollution and their corresponding health 

impact. 

To capture sustainable uptake more fully a future indicator could collate information on the proportion of total 

distance travelled by different modes of transport based on comprehensive local survey data. Other data on 

sustainable travel infrastructure, for instance the presence of cycle schemes, would also be useful. The data 

described below in the additional analysis section provided from smartphone data serves to expand the picture 

provided by IEA data alone. Further development of data of this type may be possible in future reports. 

Additional analysis: 

Figure 98 shows the global per capita use of fuels for road transport, as well as the percentage energy provided 

by biofuels and electricity with the countries with the highest adoption of these fuels for road transport.  
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Figure 98 Top panel: Global per capita energy use on road transport by fuel (GJ/Person). Bottom panel: 

% of road transport energy provided by biofuels (left) and electricity (right) for select countries. 
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3.2: Air Pollution and Health Co-benefits 

Indicator 3.2.1: Mortality from Ambient Air Pollution  

Indicator authors 

Dr Gregor Kiesewetter, Laura Warnecke 

Methods  

This indicator quantifies contributions of individual source sectors to ambient PM2.5 exposure and its health 

impacts. Contributions from coal have been highlighted across all sectors. 

Estimates of sectoral source contributions to annual mean exposure to ambient PM2.5 were calculated using the 

GAINS model,211 which combines bottom-up emission calculations with atmospheric chemistry and dispersion 

coefficients.  

Energy statistics are taken from the IEA World Energy Statistics for 2015, from the IEA World Energy Outlook 

2021212 for 2020 and from the World Energy Outlook 2022213 for 2021. Data on energy consumption in 

individual sectors are imported into GAINS, matching the sectors of the World Energy Statistics and 

downscaling to the 180 GAINS global regions. They are then merged with GAINS information on application of 

emission control technologies in each region and their emission factors to calculate emissions of PM2.5 and its 

precursor gases SO2, NOx, NH3, and non-methane VOC. 

Ambient PM2.5 concentrations are calculated from the region and sector specific emissions by applying 

atmospheric transfer coefficients, which are a linear approximation of full chemistry-transport models. 

Atmospheric transfer coefficients in GAINS are based on full year perturbation simulations with the EMEP 

Chemistry Transport Model214 at 0.1°×0.1° resolution (for low-level sources) / 0.5°×0.5° resolution (for all other 

sources) using meteorology of 2015. In Europe, the resolution is slightly different but the principle is the same. 

Calculations for Europe are described in detail by Kiesewetter et al. (2015),215 calculations for the rest of the 

world are described by Amann et al.216 Calculated ambient PM2.5 concentrations have been validated against in-

situ observations from the WHO’s Urban Ambient Air Pollution Database (2018 update),217 and other sources 

where available (e.g., Chinese statistical yearbook) and show in general good agreement with monitoring data 

up to urban background level (local variation at roadside stations is not captured by the resolution of a few 

kilometres). 

Deaths from total ambient PM2.5 for regions other than Europe are calculated following the methodology of the 

Global Burden of Disease studies. Exposure-response relationships have been updated for this report to be 

consistent with the Global Burden of Disease 2019 study.218 The MR-BRT curves were obtained from the public 

release site219 and relative risks for six diseases IHD, COPD, stroke, lung cancer, ALRI, and type 2 diabetes 

calculated from them. The latter has been added this year. We used 1000 draws of the MRBRT curve for each 

disease and age group (where age specific) and scaled them to have RR=1 at the theoretical minimum-risk 

exposure level (taken from 1000 corresponding draws, average 4.15µgm-3). Exposure levels below the TMREL 

level are assigned RR=1. 

The update to the GBD-2019 exposure-response relationships resulted in a significant increase in attributable 

mortality beyond the numbers published in the previous editions of the Lancet Countdown, which were based 

on the integrated exposure response relationships (IERs) developed within the Global Burden of Disease 2013 

study.220 

Disease and age specific baseline mortality rates are taken from the GBD Results database221 and have been 

updated to the 2019 data. The shares of different diseases were applied to age-specific total deaths taken from 

UN World Population Prospects (2017 update);222 for 2019, the statistics were interpolated linearly between 

2015 and 2020.  

For Europe, this indicator follows the WHO Europe methodology and applies Exposure-response relationships 

for all-cause non-accidental mortality among the total population over 30 years of age. This year, concentration-

response relationships have been updated to those reported in the systematic review for the 2021 WHO Air 

Quality Guidelines.223 Other details are described in Kiesewetter et al. (2015).215 
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Attribution of estimated deaths from AAP to polluting sectors was done proportional to the contributions of 

individual sectors to population-weighted mean PM2.5 in each country.  

Data  

1. Energy: IEA World Energy Balances for 2015,224 World Energy Outlook 2021 (for the year 2020),212 

World Energy Outlook 2022 (for the year 2021)213  

2. Other activities: Agricultural livestock data are based on FAO statistics and projections225 and fertiliser 

use is based on data from the International Fertilizer Association 

3. UN World Population Prospects, 2017 update226 

4. Global Burden of Disease 2019 study,218 MR-BRT curves obtained from the public release site219 

Caveats  

The indicator relies on model calculations which are inherently uncertain. The resolution of approximately 

seven to ten km is deemed appropriate for urban background levels of PM2.5 but may underestimate exposure in 

case of strong local PM2.5 increments. The meteorology year is fixed to 2015. 

Uncertainty in the shape of integrated exposure-response relationships (IERs) make the quantification of health 

burden inherently uncertain. 

Different dose-response relationships are used for Europe223 and rest of the world.218 

The non-linearity of the CRFs used for non-European countries complicates the translation between the 

mortality burden attributed to an individual source, which is calculated proportional to the source contribution to 

ambient PM2.5, and the effect of mitigating this source. While a reduction of emissions would lead to a roughly 

proportional reduction of ambient PM2.5, this would not necessarily result in a proportional reduction of the 

health burden. In highly polluted environments, the health benefits of a marginal reduction of emissions would 

be disproportionately smaller than the relative change in concentrations. 

Indicator 3.2.2 Household Air Pollution 

Indicator authors 

Prof Michael Davis, Shih-Che Hsu, Dr James Milner, Dr Nahid Mohajeri, Dr Jonathon Taylor 

Methods  

Existing estimates of global household air pollution attributable mortality from GBD and WHO are based on 

information on the frequency of use of different fuels in the population. These are presented relative to the outdoor 

air pollution estimates (e.g., the additional mortality caused by household fuels above that caused by outdoor air 

pollution). The new indicator complements this work via a method tailored for the Lancet Countdown process 

which can 1) link the health effects of household fuels to their role in climate change accounting for the GHG and 

PM 2.5 emissions, and 2) complement how outdoor air pollution mortality is estimated in the Lancet Countdown 

by using the same inputs, and 3) be updated yearly. 

 

A Bayesian hierarchical PM 2.5 exposure model was developed using sample data of personal exposure from an 

updated WHO Global HAP database,227 206  while wood, crop residues, and dung is combined into the category 

of ‘biomass’ and LPG, Natural gas, and biogas into category of ‘gas’.207 Variables were selected from monitored 

data available in 282 peer-reviewed studies covering the years 1996 to 2021 to develop Bayesian models for the 

personal PM2.5 exposure (sample size, n=260). Bayesian hierarchical models were built to generate accurate PM2.5 

exposure coefficients and variance around the estimates from the sample data and apply to IIASA GAINS 

modelled data for predicting PM2.5 personal exposure globally. This model provides estimates on PM2.5 personal 

exposure levels based on average 24-hour period.  

 

 

The hierarchical model incorporating the following predictors for each country:  

(i) fuel types (biomass, charcoal, coal, gas, electricity); 
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(ii) traditional/improved stove; 

(iii) urban/rural location; 

(iv) population weighted heating degree days; 

(v) population weighted ambient PM2.5; 

(vi) GNI index;  

(vii) Education index; 

(viii) season (winter/summer/whole year) 

 

Annual population-weighted average PM2.5 personal exposure were estimated for 62 countries in five WHO 

regions (African Region, Eastern Mediterranean Region, Region of the Americas, South-East Asian Region, 

Western Pacific Region). We exclude the European Region due to high uncertainty in the estimated exposure 

values.   

 

Attributable premature mortality due to personal exposure is estimated at national level (per 100,000 population) 

using the standard comparative risk assessment (CRA) approach. This involves calculation of population 

attributable fractions based on the estimated PM2.5 personal exposure for each country (and separately for urban 

and rural populations).227,228 This exposure is then converted into an estimate of excess deaths using Global Burden 

of Disease functions. We use three following weighted averages to quantify the mortality rates for the number of 

attributable deaths per 100,000 individuals for solid fuels at national level: (i) Proportion of people using each 

fuel type (biomass, charcoal, coal, gas, electricity) in each country and for urban and rural settings.207  (ii) 

Proportion of people using each stove type (traditional, improved) in each country for urban and rural settings. 

(iii) Proportion of people living in urban and rural setting in each country.  

 

 

The household air pollution model includes ambient PM2.5 exposure from GAINS as an input. The mortality 

estimates currently include some degree of overlap with estimates of mortality due to ambient air pollution, which 

is also the case for the WHO estimates.229   

 

Data  

• Ambient PM2.5 concentrations for 2020 from IIASA216 

• Fuel Type: IIASA GAINS model via IEA212 

• Stove Type230 

• Heating Degree Days for the year 2000 (1985–2015) provided by NASA231 

• Education index and GNI index provided by United Nations Development Programme (UNDP). Year 

2019 

• WHO Global HAP Database.206 

• WHO. Household air pollution attributable death rate (per 100 000 population)229 

• WHO. Proportion of population with primary reliance on fuels and technologies for cooking, by fuel 

type (%)232 

• Baseline mortality data: GBD national estimates for males and females218 

• Exposure-response functions for attributable premature mortality: GBD2019 MR-BRTs, cause, and age 

specific, for six diseases221  

Caveats 

The indicator provides useful information as to the variation of PM2.5 exposure for a given fuel use and stove type 

and urban/rural locations as well as their health impacts. The inclusion of ambient air pollution for urban and rural 

locations (obtained from IIASA GAINS modelled gridded data) and the heating degree days for the same urban 

and rural areas are the two unique predictors used here for the first time in Bayesian PM2.5 exposure models at 

global scale. 

 

One challenge is the combination/overlap of ambient PM2.5 and household PM2.5 exposure, which may lead to 

double counting mortality.  

 

Indoor air pollution is complex and impacted by a number of different factors including housing characteristics 

(e.g., ventilation rate, kitchen locations, window in kitchen, roofing materials) which are not typically captured in 
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all the monitored data. Updating the sample data with information on these and related factors should greatly 

improve the future predictions as to household air pollution.  

 

Another challenge concerns the measured/monitored household air pollution data (e.g., studies included in the 

WHO database). More specifically, the concerns are as follows: rather limited number of households monitored 

in each study; each study uses different monitoring technology to collect the data; and data collected from different 

measurement periods as well as different analytic methods used for data processing in each study. Nevertheless, 

using Bayesian predictive models developed in this study allows us to explore a wide range of PM2.5 exposures 

depending on fuel use, stove types, and for differences urban and rural locations of countries worldwide.  

 

As regards COVID-19, several studies reported the increase in indoor exposure to PM2.5 during the lockdown 

particularly in households located in rural areas.233,234 This could potentially have negative impact on human 

health. Further data from the year 2020 are needed to estimate accurately the exposure and the health impact of 

global COVID-19 lockdowns, especially in rural areas where the use of solid fuels is very common. 

 

Additional analysis 

 

Figure 99 The estimated urban, rural, and national-level annual weighted average HAP-PM2.5 personal 

exposure (in µg/m3) and related attributable premature death rate (per 100,000 population) of polluting 

solid fuels and clean fuels. 

 

3.3: Food, Agriculture, and Health Co-benefits 

Indicator 3.3.1: Emissions from Agricultural Production and Consumption 

Indicator authors 

Dr Carole Dalin, Dr Harry Kennard  

Methods  
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The 2023 update of this indicator radically increases the number of commodities considered. GHG emissions 

from agricultural production and consumption now incorporates new classes of fruits, vegetables, nuts, pulses 

and legumes and other crops. While these additional crops tend to have much lower carbon intensity than animal 

derived products, their inclusion provides a more complete picture of the agricultural commodities used in the 

global food system. 

The methods by which the estimates of GHG for food products is devided into two sections, one covering 

livestock and the second covering crops. 

Livestock products 

Emissions intensities for the year 2000 are calculated in the following manner as in Dalin et al.235 The following 

livestock species are included: 

Ruminant Non-Ruminant 

Cattle, dairy  

(FAO Item Code 960)  

Chicken, broilers  

(FAO Item Code 1053)  

Cattle, non-dairy  

(FAO Item Code 961) 

Chicken, layers  

(FAO Item Code 1052) 

Buffaloes  

(FAO Item Code 946) 

Swine, market  

(FAO Item Code 1049) 

Goats  

(FAO Item Code 1016) 

Swine, breeding  

(FAO Item Code 1079) 

Sheep  

(FAO Item Code 976) 

 

 

All livestock categories also include secondary products—such as cheese in the case of milk—where data were 

available. Cattle products comprise beef meat and milk and buffalo meat and milk. Sheep and goat products 

comprise meat and milk. Poultry products comprise meat and eggs of chickens, geese, ducks, and turkeys. 

Swine products include pork and secondary processed commodities, such as ham and bacon.  

Emissions from enteric fermentation and manure management are obtained from Herrero et al.236 

For manure left on pasture, rates from the GLOBIOM model were used237 and a linear N2O emission model 

applied.238  

 

This information is presented in tonne carbon 

dioxide equivalent (CO2e) per tropical livestock 

unit (tlu), which is converted to livestock head 

using the table below.239 

Head per tlu 

Bovine (Buffalo, Cattle (dairy), Cattle(non-dairy)) 1.43 

Small Ruminants (Goats, Sheep) 10 

Poultry (Chicken) 100 

Swine 5 

 



154 

 

The emissions per head are divided into world regions (as in the GLOBIOM model) and, for ruminants, 

livestock system (combination of climates from arid to humid, and practices from rangeland to feedlots, c.f. 

Herrero et al. 2013).236 To convert these emissions to country values, an average is made across the region-

system pairs within each country, weighted by the number of animals.  

To obtain the emissions from grazing, the synthetic fertilizer applied to grassland from Chang et al.240 is used as 

input to the N2O emission model.238 Animal products’ emissions are also incorporated into the feed crop-related 

emissions proportionally to the feed ingredients consumed by animals—by species, region and systems— using 

feed data from Herrero et al. 2013.236 These emissions from feed crops and grazed grasslands are then added to 

the direct livestock emissions (from enteric fermentation, manure management, and manure left on pasture) to 

provide overall emissions rates for each livestock species in the year 2000. 

Finally, emissions intensity values for each livestock commodity (egg, meat, milk) and country are obtained by 

dividing CO2e values by the output of milk/meat/egg per head from Herrero et al. 2013.236 

Crop Products: 

The emissions from fertiliser (synthetic and manure) application, rice cultivation, and cultivation from organic 

soils for 172 crops for the year 2000 are obtained from Carlson et al. 2017,241 who use IPCC methodology and a 

non-linear N2O emission model. Crop types corresponding to “fodder” and “fibre” types are then excluded for 

this report, leaving 147 crops which are directly consumed by humans. 

Crops used for livestock feed are excluded from the “crops” emissions, as they are included in the intensity of 

livestock production; the FAO reports this in the following way: “Cereal crops harvested for hay or harvested 

green for food, feed or silage or used for grazing are therefore excluded”.239 

Production values 2001–2019 

Since the emission intensity of production is not constant over time, its values by commodity (for both livestock 

and crop products) were scaled using the FAO values as an index. The FAO produces GHG emissions intensity 

values by animal commodity and broad crop category (distinguishing rice, which, unlike other crops, emits large 

amounts of methane) for the countries covered by their analysis. However, these values are volatile at the 

country level, so regional values were used here. The percentage change from the year 2000 value was applied 

to the values derived from Herrero et al.,236 Chang et al.,240 and Carlson et al.,241 outlined above (methodology 

from Dalin et al.235). At the time of publication, the values for 2018 had not been published by the FAO, so the 

intensity scaling was assumed to be the same as in 2017. This will be updated in future years. Any missing 

values in scaling factor were assumed to be 1 (constant emission intensity). Any intensity values missing for a 

given country were given the regional average for that year and commodity, although practically this had little 

impact, because missing values only corresponded to countries which had very low or no production of the 

commodity in question. 

Consumption emissions 

The GHG emissions associated with agricultural commodity consumption uses FAO production and trade data 

to estimate the total GHG emissions footprint associated with each of the commodities considered in a given 

country. This method is used by Dalin et al.242 for tracing water consumption in global food networks but is 

adapted here to calculated GHG footprint. The basic equation the indicator follows is: 

Consumption = production + imports - exports  

FAO production and trade data are used in the following manner. For a given commodity the national 

production values in tonnes are converted into CO2e values using the GHG emissions intensity values supplied 

by indicator 3.5.1 GHG production estimates (via Carlson et al. 2017)241 associated with producing that tonnage 

of the commodity. Next, secondary commodities are converted in primary equivalent values by multiplying the 

trade tonnage by the value derived from Dalin et al. 2017.242 For example, the primary equivalences for wheat 

products are as shown in Table 62: 

Bran, wheat                          1.01 

Bread 0.88 



155 

 

Bulgur 1.05 

Cereals, breakfast 1.18 

Flour, wheat 1.01 

Macaroni 1.01 

Pastry 0.88 

Wafers 0.88 

Wheat 1.00 

Table 62: Primary equivalences for wheat products 

 

These values are then converted into GHG emissions equivalent, based on the GHG emissions intensity. For a 

given year, the trade balances are corrected to take into account that a given commodity may have been 

produced in one country, processed in another and finally imported into a third, using an algorithm developed by 

Kastner et al 2011.243 

Data  

1. National annual production of animal products items (tonnes) – FAOSTAT (2022 update)239 

2. National annual trade (country-country) of animal products items (tonnes) – FAOSTAT (2022 update) 
239 

3. Correspondence of items across item lists with different grouping – FAOSTAT239  

4. GHG production estimates including grassland and feed crop emissions (via Herrero et al. 2013 and 

Dalin et al. 2019)235,236 Definitions: Animal types: bovine cattle (beef and buffalo), sheep and goat 

ruminants, pigs, poultry (chicken, ducks, geese and turkeys) 

5. National annual production of crops (tonnes) – FAOSTAT (2022 update) 239 

6. National annual trade (country-country) of crop products (tonnes) – FAOSTAT (2022 update) 239 

7. GHG emissions intensity of crop products for each country– provided by Carlson et al. (2017)241  

Caveats  

In the context of this indicator, consumption refers to the net balance of food products entering a country within 

a given year, i.e., national production and net imports together, which could also be referred to as “national 

supply”. Here net imports refers to imports minus exports. It does not refer to the total GHG emissions 

attributable to food consumed by individuals. Indeed, at present, this indicator only considers the emissions 

associated with food production described above and does not take into account emissions associated with food 

transport and processing, storage and decomposition, and use change and deforestation.244 

This indicator does not account for emissions associated with land conversion to agriculture (such as 

deforestation) but does consider emissions form cultivation of organic soils (such as peatland).   

For livestock, data on stock numbers has been extracted from FAO database, however, some data is missing for 

some years, most notably Somalia (missing data 2000–2011) for non-dairy cattle. Data on grazing emissions 

from small islands is also missing, and therefore imputed using regional average values as described above.  

The emission factors differ from FAO numbers: 

• For livestock, this is due to calculation of emissions of enteric fermentation, manure management and 

manure left on pasture at GLOBIOM region (n=29) and livestock system (n=8) level whereas the FAO 

use subcontinental (n=9) and climatic level (n=3).239  

• For crops, this is due to the FAO assuming slightly higher synthetic N application, greater manure N 

inputs, and a linear emissions factor of 1%, in contrast to a mean of 0.77% used by the non-linear 

model of Carlson et al. (2017).241   
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Agricultural consumption emissions estimates are derived directly from FAO trade values (re-organised as 

producer-consumer trade only with the algorithm), as described above. Therefore, these values differ from the 

production estimates, which are based on extrapolating year 2000 figures. On average across all years, the 

estimate of total emissions due to consumption are 2.25% above production values, and do not differ by more 

than 10% in any given year. The sole exception to this is the estimates of the differences between production 

and consumption by WHO region shown in the figure in the main text. For this figure the production values are 

derived directly from FAO values.  

Additional analysis 

A substantial amount of CO2e is associated with food that it is not consumed, whether that be during the food 

production process, transportation loses, or being wasted at the plate. The volumes of food considered here 

include food that is wasted or lost in transport, but not the additional emissions associated with the 

decomposition of food waste. The IPCC estimates that between 8–10% of total anthropogenic GHG emissions 

are associated with food loss and waste.245 However, wastage is not equally distributed by country, with one 

analysis finding that high income nations waste six times by weight the amount that low-income ones.246 

 

Indicator 3.3.2 Diet and Health Co-benefits  

Indicator authors 

Dr Harry Kennard, Prof Marco Springmann 

Methods 

Baseline consumption data 

Baseline food consumption was estimated by adopting estimates of food availability from the FAO’s food 

balance sheets, and adjusting those for the amount of food wasted at the point of consumption.260,261 This proxy 

for food consumption was disaggregated by age and sex by adopting the same age and sex-specific trends as 

observed in dietary surveys.247 

An alternative would have been to rely on a set of consumption estimates that has been based on a variety of 

data sources, including dietary surveys, household budget and expenditure surveys, and food availability 

data.248,249 However, neither the exact combination of these data sources, nor the estimation model used to 

derive the data have been made publicly available. For some individual countries, using dietary surveys would 

also have been an alternative. However, underreporting is a persistent problem in dietary surveys,250,251 and 

regional differences in survey methods would have meant that the results would not be comparable between 

countries. In contrast to dietary surveys, waste-adjusted food-availability estimates indicate levels of energy 

intake per region that reflect differences in the prevalence of overweight and obesity across regions.252 

Food balance sheets report on the amount of food that is available for human consumption.253 They reflect the 

quantities reaching the consumer, but do not include waste from both edible and inedible parts of the food 

commodity occurring in the household. As such, the amount of food actually consumed may be lower than the 

quantity shown in the food balance sheet depending on the degree of losses of edible food in the household, e.g., 

during storage, in preparation and cooking, as plate-waste, quantities fed to domestic animals and pets, or 

thrown away.  

The waste-accounting methodology developed by the FAO was followed to account for the amount of food 

wasted at the household level that was not accounted for in food availability estimates.254 Table 63 provides an 

overview of the parameters used in the calculation.  

For each commodity and region, food consumption was estimated by multiplying food availability data with 

conversion factors (cf) that represent the amount of edible food (e.g., after peeling) and with the percentage of 

food wasted during consumption (1-wp(cns)). The difference in wastage for roots and tubers, fruits and 

vegetables, and fish and seafood, also accounted for differences between the proportion that is utilised fresh 
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(pctfrsh) and the proportion that utilised in processed form (pctprcd). The equation used for each food commodity 

and region was: 

𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙
𝑝𝑐𝑡𝑓𝑟𝑠ℎ

100
∙ 𝑐𝑓𝑓𝑟𝑠ℎ  ∙ (1 −

𝑤𝑝(𝑐𝑛𝑠𝑓𝑟𝑠ℎ)

100
) 

+ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙
𝑝𝑐𝑡𝑝𝑟𝑐𝑑

100
∙ 𝑐𝑓𝑝𝑟𝑐𝑑 ∙ (1 −

𝑤𝑝(𝑐𝑛𝑠𝑝𝑟𝑐𝑑)

100
)   

 

 
Table 63. Percentage of food wasted during consumption (cns), and percentage of processed utilisation 

(pctprcd). The percentage of fresh utilisation is calculated as 1-pctprcd. Conversion factors to edible 

portions of foods are provided below the table.  

 

Comparative risk assessment 

The mortality and disease burden attributable to dietary and weight-related risk factors was estimated by 

calculating population impact fractions (PIFs) which represent the proportions of disease cases that would be 

avoided when the risk exposure was changed from a baseline situation to a counterfactual situation. For 

calculating PIFs, using the general formula:255–257  

  

 
𝑃𝐼𝐹 =

∫ 𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥 − ∫ 𝑅𝑅(𝑥)𝑃′(𝑥)𝑑𝑥

∫ 𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥
  

 

where 𝑅𝑅(𝑥) is the relative risk of disease for risk factor level 𝑥, 𝑃(𝑥) is the number of people in the population 

with risk factor level 𝑥 in the baseline scenario, and 𝑃′(𝑥) is the number of people in the population with risk 

factor level 𝑥 in the counterfactual scenario. It was assumed that changes in relative risks follow a dose-response 

relationship,256and that PIFs combine multiplicatively, i.e. 𝑃𝐼𝐹 = 1 − ∏ (1 − 𝑃𝐼𝐹𝑖)𝑖  where the i’s denote 

independent risk factors. 256,258 

 

Europe

USA, 

Canada, 

Oceania

Indus-

trialized 

Asia

Sub-

Saharan 

Africa

North Africa, 

West and 

Central Asia

South and 

Southeast 

Asia

Latin 

America

cereals wp(cns) 25 27 20 1 12 3 10

pctprcd 73 73 15 50 19 10 80

wp(cns) 17 30 10 2 6 3 4

wp(cnsprcd) 12 12 12 1 3 5 2

oilseeds and pulses cns 4 4 4 1 2 1 2

pctprcd 60 60 4 1 50 5 50

wp(cns) 19 28 15 5 12 7 10

wp(cnsprcd) 15 10 8 1 1 1 1

milk and dairy wp(cns) 7 15 5 0.1 2 1 4

eggs wp(cns) 8 15 5 1 12 2 4

meat wp(cns) 11 11 8 2 8 4 6

pctprcd

wp(cns) 11 33 8 2 4 2 4

wp(cnsprcd) 10 10 7 1 2 1 2

Conversion factors : maize, millet, sorghum: 0.69; wheat, rye, other grains: 0.78; rice: 1; roots: 0.74 (0.9 for 

industrial processing); nuts and seeds: 0.79; oils: 1; vegetables: 0.8 (0.75 for industrial processing); fruits: 0.8 

(0.75 for industrial processing); beef: 0.715; lamb: 0.71; pork: 0.68; poultry: 0.71; other meat: 0.7; milk and dairy: 

1; fish and seafood: 0.5; other crops: 0.78

roots and tuber

fruits and vegetables

fish and seafood

Food group Item

Region

40% for low-income countries, and 96% for all others.
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The number of avoided deaths due to the change in risk exposure of risk i, Δdeathsi, was calculated by 

multiplying the associated PIF by disease-specific death rates, DR, and by the number of people alive within a 

population, P:   

 

 𝛥𝑑𝑒𝑎𝑡ℎ𝑠𝑖(𝑟, 𝑠, 𝑎, 𝑑) = 𝑃𝐼𝐹𝑖(𝑟, 𝑠, 𝑎, 𝑑) ∙ 𝐷𝑅(𝑟, 𝑠, 𝑎, 𝑑) ∙ 𝑃(𝑟, 𝑠, 𝑎)  

where PIFs are differentiated by region r, sex s, age group a, and disease/cause of death d; the death rates are 

differentiated by region, sex, age group, and disease; the population groups are differentiated by region, sex, and 

age group; and the change in the number of deaths is differentiated by region, sex, age group, and disease. 

 

Publicly available data sources were used to parameterize the comparative risk analysis. Mortality and 

population data were adopted from the Global Burden of Disease project.259 Baseline data on the weight 

distribution in each country were adopted from a pooled analysis of population-based measurements undertaken 

by the NCD Risk Factor Collaboration.252  

 

 
Figure 100:  Deaths attributable to diet-related risks in 2018 and 2019 by risk factor and development 

region (left) and composition of attributable deaths into those from imbalanced composition and 

imbalanced energy intake (right). 

 

 

 

The relative risk estimates that relate the risk factors to the disease endpoints were adopted from meta-analyses 

of prospective cohort studies for dietary and weight-related risks.260 In line with the meta-analyses, non-linear 

dose-response relationships were included for fruits, vegetables, and nuts and seeds, and assumed linear dose-

response relationships for the remaining risk factors. As the analysis was primarily focused on mortality from 

chronic diseases, the focus was on adults aged 20 year or older, and the relative-risk estimates were adjusted for 

attenuation with age based on a pooled analysis of cohort studies focussed on metabolic risk factors,261in line 

with other assessments.257,262 

 

 Table 64 provides an overview of the relative-risk parameters used. For the counterfactual scenario, minimal 

risk exposure levels (TMRELs) was defined as follows: 300 g/d for fruits, 500 g/d for vegetables, 100 g/d for 

legumes, 20 g/d for nuts and seeds, 125 g/d for whole grains, 0 g/d for red meat, 0 g/d for processed meat, and 

no underweight, overweight, or obesity. The TMRELs are in line with those defined by the Nutrition and 

Chronic Diseases Expert Group (NutriCoDE),262 with the exception that a higher value for vegetables was used, 
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0% 20% 40% 60% 80% 100%

low whole grains

high refined grains

high roots

low fruits

low vegetables

low legumes

low nuts&seeds

low oils

high sugar

high red meat

high processed meat

high poultry

high fish

high milk

high eggs

high other foods

proportion of deaths from imbalanced composition
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and zero was used as minimal risk exposure for red meat, in each case based on a more comprehensive meta-

analysis.263,264  

 

The selection of risk-disease associations used in the health analysis was supported by available criteria used to 

judge the certainty of evidence, such as the Bradford-Hill criteria used by the Nutrition and Chronic Diseases 

Expert Group (NutriCoDE),262 the World-Cancer-Research-Fund criteria used by the Global Burden of Disease 

project,278 as well as NutriGrade ( Table 64).265 The certainty of evidence supporting the associations of dietary 

risks and disease outcomes as used here were graded as moderate or high with NutriGrade,264,266,267 and/or 

assessed as probable or convincing by the Nutrition and Chronic Diseases Expert Group,262and by the World 

Cancer Research.268 The certainty of evidence grading in each case relates to the general relationship between a 

risk factor and a health outcome, and not to a specific relative-risk value.  

 



160 

 

 
Table 64 Relative risk parameters (mean and low and high values of 95% confidence intervals) for dietary 

risks and weight-related risks.  

 

Not all available risk-disease associations that were graded as having a moderate certainty of evidence and 

showed statistically significant results in the meta-analyses that included NutriGrade assessments were included 

in the analysis. 264,266,267 That was because for some associations, such as for milk and fish, more detailed meta-

analyses (with more sensitivity analyses) were available that indicated potential confounding with other major 

Food group Endpoint Unit RR mean RR low RR high Reference

CHD 50 g/d 1.27 1.09 1.49 Bechthold et al (2019)

Stroke 50 g/d 1.17 1.02 1.34 Bechthold et al (2019)

Colorectal cancer 50 g/d 1.17 1.10 1.23 Schwingshackl et al (2018)

Type 2 diabetes 50 g/d 1.37 1.22 1.55 Schwingshackl et al (2017)

CHD 100 g/d 1.15 1.08 1.23 Bechthold et al (2019)

Stroke 100 g/d 1.12 1.06 1.17 Bechthold et al (2019)

Colorectal cancer 100 g/d 1.12 1.06 1.19 Schwingshackl et al (2018)

Type 2 diabetes 100 g/d 1.17 1.08 1.26 Schwingshackl et al (2017)

CHD 100 g/d 0.95 0.92 0.99 Aune et al (2017)

Stroke 100 g/d 0.77 0.70 0.84 Aune et al (2017)

Cancer 100 g/d 0.94 0.91 0.97 Aune et al (2017)

CHD 100 g/d 0.84 0.80 0.88 Aune et al (2017)

Cancer 100 g/d 0.93 0.91 0.95 Aune et al (2017)

Legumes CHD 57 g/d 0.86 0.78 0.94 Afshin et al (2014)

Nuts CHD 28 g/d 0.71 0.63 0.80 Aune et al (2016)

CHD 30 g/d 0.87 0.85 0.90 Aune et al (2016b)

Cancer 30 g/d 0.95 0.93 0.97 Aune et al (2016b)

Type 2 diabetes 30 g/d 0.65 0.61 0.70 Aune et al (2016b)

CHD 15<BMI<18.5 1.17 1.09 1.24 Global BMI Collab (2016)

Stroke 15<BMI<18.5 1.37 1.23 1.53 Global BMI Collab (2016)

Cancer 15<BMI<18.5 1.10 1.05 1.16 Global BMI Collab (2016)

Respiratory disease 15<BMI<18.5 2.73 2.31 3.23 Global BMI Collab (2016)

CHD 25<BMI<30 1.34 1.32 1.35 Global BMI Collab (2016)

Stroke 25<BMI<30 1.11 1.09 1.14 Global BMI Collab (2016)

Cancer 25<BMI<30 1.10 1.09 1.12 Global BMI Collab (2016)

Respiratory disease 25<BMI<30 0.90 0.87 0.94 Global BMI Collab (2016)

Type 2 diabetes 25<BMI<30 1.88 1.56 2.11 Prosp Studies Collab (2009)

CHD 30<BMI<35 2.02 1.91 2.13 Global BMI Collab (2016)

Stroke 30<BMI<35 1.46 1.39 1.54 Global BMI Collab (2016)

Cancer 30<BMI<35 1.31 1.28 1.34 Global BMI Collab (2016)

Respiratory disease 30<BMI<35 1.16 1.08 1.24 Global BMI Collab (2016)

Type 2 diabetes 30<BMI<35 3.53 2.43 4.45 Prosp Studies Collab (2009)

CHD 30<BMI<35 2.81 2.63 3.01 Global BMI Collab (2016)

Stroke 30<BMI<35 2.11 1.93 2.30 Global BMI Collab (2016)

Cancer 30<BMI<35 1.57 1.50 1.63 Global BMI Collab (2016)

Respiratory disease 30<BMI<35 1.79 1.60 1.99 Global BMI Collab (2016)

Type 2 diabetes 30<BMI<35 6.64 3.80 9.39 Prosp Studies Collab (2009)

CHD 30<BMI<35 3.81 3.47 4.17 Global BMI Collab (2016)

Stroke 30<BMI<35 2.33 2.05 2.65 Global BMI Collab (2016)

Cancer 30<BMI<35 1.96 1.83 2.09 Global BMI Collab (2016)

Respiratory disease 30<BMI<35 2.85 2.43 3.34 Global BMI Collab (2016)

Type 2 diabetes 30<BMI<35 12.49 5.92 19.82 Prosp Studies Collab (2009)

Overweight

Obesity 

(grade 1)

Obesity 

(grade 2)

Obesity 

(grade 3)

Processed 

meat

Red meat

Fruits

Vegetables

Whole grains

Underweight
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dietary risks or health status at baseline.269–271 Such sensitivity analyses were not presented in the meta-analyses 

that included NutriGrade assessments, but they are important for health assessments that evaluate changes in 

multiple risk factors (Table 65).   

 

 
Table 65 Overview of existing ratings on the certainty of evidence for a statistically significant association 

between a risk factor and a disease endpoint. The ratings include those of the Nutrition and Chronic 

Diseases Expert Group (NutriCoDE),262 the World Cancer Research Fund,268and NutriGrade.264,266,267 The 

ratings relate to the risk-disease associations in general, and not to the specific relative-risk factor used for 

those associations in this analysis.    

 

 

Weight-related risks are connected to imbalanced energy intake. To highlight this connection, the weight-related 

disease burden was attributed to consuming too much or too little of specific foods. For that purpose, the current 

energy intake by food group in each country was first compared to a dietary pattern that minimises both diet and 

weight-related risks, and then attributed the proportion of energy intake of under and over-consumed foods to 

the proportion of deaths attributable to underweight on the one hand and to overweight and obesity on the other. 

The minimal-risk patterns were based on recommendations for optimal energy intake given the sex, age, and 

height structure of each country,252,272 the TMREL values used in the dietary risk 

assessment,218,260,262,263,266,273,274and food-based recommendations for healthy and sustainable diets for the 

Food group Endpoint Association Certainty of evidence

Fruits CHD NutriCoDE: probable or convincing; 

NutriGrade: moderate quality of meta-evidence

Stroke NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence

Cancer WCRF: strong evidence (probable) for some cancers

NutriGrade: moderate quality of meta-evidence for colorectal cancer

Vegetables CHD NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence

Cancer WCRF: strong evidence (probable) for non-starchy vegetables and some cancers

NutriGrade: moderate quality of meta-evidence for colorectal cancer

Legumes CHD NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence

Nuts and seeds CHD NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence

Whole grains CHD NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence

Cancer WCRF: strong evidence (probable) for colorectal cancer

NutriGrade: moderate quality of meta-evidence for colorectal cancer

NutriCoDE: probable or convincing

NutriGrade: high quality of meta-evidence

Red meat CHD increase NutriGrade: moderate quality of meta-evidence

Stroke increase NutriGrade: moderate quality of meta-evidence

Cancer WCRF: strong evidence (probable) for colorectal cancer

NutriGrade: moderate quality of meta-evidence for colorectal cancer

NutriCoDE: probable or convincing

NutriGrade: high quality of meta-evidence

Processed meat CHD NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence

Stroke increase NutriGrade: moderate quality of meta-evidence

Cancer WCRF: strong evidence (convincing) for colorectal cancer

NutriGrade: moderate quality of meta-evidence for colorectal cancer

Type-2 

diabetes
increase NutriGrade: high quality of meta-evidence

NutriCoDE: Nutrition and Chronic Diseases Expert Group

WCRF: World Cancer Research Fund

increase

Type-2 

diabetes
increase

increase

increase

NutriGrade: Grading of Recommendations Assessment, Dvelopment, and Evaluation (GRADE) tailored to nutrition research

reduction

reduction

reduction

Type-2 

diabetes
reduction

reduction

reduction

reduction

reduction

reduction

reduction
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remaining food groups.291 The recommendations were implemented as minimum and maximum values, which 

preserved a country’s intake if it was within recommendations (Table 66).  

 

 

Table 66 Food-based recommendations used to construct minimal risk dietary patterns. The 

recommendations include minimal risk exposure levels for dietary risks (upper rows) and food-based 

recommendations for a healthy and sustainable diets (lower rows). 

 

For the different diet scenarios, uncertainty intervals were calculated associated with changes in mortality based 

on standard methods of error propagation and the confidence intervals of the relative risk parameters. For the 

error propagation, the error distribution was approximated of the relative risks by a normal distribution and used 

that side of deviations from the mean which was largest. This method leads to conservative and potentially 

larger uncertainty intervals as probabilistic methods, such as Monte Carlo sampling, but it has significant 

computational advantages, and is justified for the magnitude of errors dealt with here (<50%) (see e.g., IPCC 

Uncertainty Guidelines).  

 

Data 

Table 67 provides an overview of the data sources used for this indicator. 

 

Type Coverage Source 

Exposure data:     

Food consumption 

data 
Country-level 

Food availability data adjusted for food waste at the household 

level and for age and sex-specific trends.247,253,254 Estimates of 

energy intake were in line with trends in body weight across 

countries.252 

Weight estimates Country-level 
Baseline data from pooled analysis of measurement studies 

differentiated by sex and age with global coverage.252  

Health analysis:   

Min Max

Fruits 300 >300 Aune et al (2017)

Vegetables 500 >500 Aune et al (2017)

Legumes 100 >100 Micha et al (2017), Afshin et al (2017)

Nuts and seeds 20 >20 Micha et al (2017), Aune et al (2016a)

Whole grains 125 225 Micha et al (2017), Aune et al (2016b)

Red meat 0 0 GBD 2019 (2020), Bechthold et al (2017)

Processed meat 0 0 GBD 2019 (2020), Bechthold et al (2017)

Oils 40 80 Willett et al (2019)

Sugar 0 31 Willett et al (2019)

Roots 0 100 Willett et al (2019)

Milk 0 250 Willett et al (2019)

Eggs 0 13 Willett et al (2019)

Poultry 0 29 Willett et al (2019)

Fish 0 28 Willett et al (2019)

Food group
Recommended intake

Source
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Relative risk 

estimates 
General 

Adopted from meta-analysis of prospective cohort studies. 
260,263,264,266,267,273,275 The certainty of evidence for the risk-

disease associations were rated as moderate to high by 

NutriGrade.264,266,267 

Mortality and 

population data 
Country-level 

Adopted from the Global Burden of Disease project by 

country, sex, and age group.259 

 

Table 67 Overview of data sources 

 

 

Caveats 

In the comparative risk assessment, relative risk factors were used that are subject to the caveats common in 

nutritional epidemiology, including small effect sizes and potential measurement error of dietary exposure, such 

as over and underreporting and infrequent assessment.276 For the calculations, it was assumed that the risk-

disease relationships describe causal associations, an assumption supported by the existence of statistically 

significant dose-response relationships in meta-analyses, the existence of plausible biological pathways, and 

supporting evidence from experiments, e.g., on intermediate risk factors.260,262,263,266,266,267,274,275,277–279 However, 

residual confounding with unaccounted risk factors cannot be ruled out in epidemiological studies. Additional 

aspects rarely considered in meta-analyses are the importance of substitution between food groups that are 

associated with risks, and the time lag between dietary exposure and disease.  

 

To address potential confounding, risk-disease associations were omitted that became non-significant in fully 

adjusted models, in particular those related milk intake,269,270 and to fish intake.271,278,280 The quality of evidence 

in meta-analyses that covered the same risk-disease associations as used here was graded with NutriGrade as 

moderate or high for all risk-disease pairs included in the analysis ( Table 64). 264,266,267 In addition, the Nutrition 

and Chronic Diseases Expert Group and the World Cancer Research Fund graded the evidence for a causal 

association of ten of the 12 risk-disease associations included in the analysis as probable or convincing,262,268 

The relative health ranking of leading risk factors found in the analysis was similar to existing rankings that 

relied on different relative-risk parameters and exposure data.267 

 

As exposure data, a proxy of food consumption was used that was derived from estimates of  food availability 

that were adjusted for the amount of food wasted at the point of consumption.253,254 An alternative would have 

been to rely on a set of consumption estimates that has been based on a variety of data sources, including dietary 

surveys, household budget and expenditure surveys, and food availability data.248,249 However, neither the exact 

combination of these data sources, nor the estimation model used to derive the data have been made publicly 

available. For some individual countries, using dietary surveys would also have been an alternative. However, 

underreporting is a persistent problem in dietary survey,250,251 and regional differences in survey methods would 

have meant that the results would not be comparable between countries. In contrast to dietary surveys, waste-

adjusted food-availability estimates indicate levels of energy intake per region that reflect differences in the 

prevalence of overweight and obesity across regions.252 
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Indicator 3.4: Healthcare Sector Emissions 

Indicator authors 

Dr Matthew Eckelman, Dr Jodi D. Sherman 

Methods  

This indicator is in the form of healthcare-associated GHG emissions per capita per year, including direct 

emissions from healthcare facilities as well as emissions from the consumption of goods and services supplied 

by other sectors. Results are calculated by assigning aggregate national health expenditures from WHO to final 

demand for ‘Health and Social Work’ sectors in the EE-MRIO model. Environmental satellite accounts 

including GHG emissions accompany each EE-MRIO model. Consumption-based GHG emissions are then 

calculated using the standard Leontief inverse technique281 

Modeling for prior years of the Lancet Countdown report utilized the WIOD MRIO model; however, the most 

recent emissions satellite accounts for this model date to 2016 for carbon dioxide emissions or to 2013 when 

considering other air pollutant emissions.  Therefore, in this year’s report, the most recent version (v3.8.2) of the 

EXIOBASE MRIO model was used, which includes macroeconomic tables across multiple years, including the 

current model year 2020.  

EXIOBASE uses euros as the currency unit.  Per capital WHO expenditure data in 2020 US dollars were 

converted to 2020 using the average exchange rate for that year (1 USD = 0.893 EUR) as expressed in the WHO 

health accounts for that year. Because the expenditure and model years were the same, no deflation adjustments 

were necessary. 

EXIOBASE v3.8.2 satellite accounts include both uncharacterized emissions (physical quantities) and 

characterized emissions (impacts). Here, the characterized emissions intensities were used for GHG emissions 

(in CO2-equivalents) per million 2020 EUR for estimation of health sector carbon footprints.  For estimation of 

public health damages, separate factors for disability-adjusted life-years (DALYs) per million 2020 EUR were 

used for emissions of PM2.5 and ozone precursors. 

Data  

1. Environmentally extended multi-region input-output tables: EXIOBASE v3.8.3 model for year 2020.  

2. Per capita health expenditure data is from the World Health Organization’s Global Health Expenditure 

Database; the latest reporting year is 2020.282   

Caveats  

As only total health expenditure data are available from WHO, all expenditures are assigned to Final Demand, 

with no separation for investment.  

MRIO models are built from aggregated top-down statistical data.  Results do not reflect individual health care 

systems’ power purchase agreements for renewable energy or any offsetting activities.  Results do not include 

direct emissions of waste anaesthetic gases from clinical operations nor emissions from metered dose inhalers, 

as these are not currently reported consistently in national emissions inventories. 

 

 

Section 4: Economics and Finance 

Lead Author: Prof Paul Ekins 

Research Fellow: Dr Daniel Scamann 
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4.1: The Economic Impact of Climate Change and its Mitigation 

Indicator 4.1.1: Economic Losses due to Weather-Related Extreme Events 

Indicator authors 

Dr Daniel Scamman 

Methods  

The Swiss Re Institute provided the data for this indicator. The Swiss Re Institute sigma catastrophe database is 

an international commercial database recording both natural and man-made disasters from 1970 and has over 

12,000 entries.  

The term ‘natural catastrophe’ refers to an event caused by natural forces. Such an event generally results in a 

large number of individual losses involving many insurance policies. The scale of the losses resulting from a 

catastrophe depends not only on the severity of the natural forces concerned, but also on man-made factors, such 

as building design or the efficiency of disaster control in the afflicted region.  

 

Natural catastrophes are categorised as shown in Table 68. 

Category Peril Group Peril 

 Earthquake Earthquake 

Tsunami 

Volcano eruption 

Weather-related Storm 

Flood 

Hail 

Cold, frost 

Drought, bush fires, heat waves 

Other natural catastrophes 

Table 68: Categorisation of natural catastrophes in the data provided by the Swiss Re Institute 

 

For this indicator, only data for ‘weather-related’ events is presented. 

 

Total (insured and uninsured) economic losses reported by Swiss Re are all the financial losses directly attributable 

to a major event, i.e., damage to buildings, infrastructure, vehicles etc. This also includes losses due to business 

interruption as a direct consequence of the property damage. Insured losses are gross of any reinsurance, be it 

provided by commercial or government schemes. Total loss figures do not include indirect financial losses – i.e., 

loss of earnings by suppliers due to disabled businesses, estimated shortfalls in GDP and non-economic losses, 

such as loss of reputation or impaired quality of life. Insured losses refer to all insured losses except liability. To 

calculate uninsured losses, insured losses are subtracted from total losses. 

Data are collected from a variety of sources, both internal and external. These include professional insured claims 

aggregators as well as insurance associations. Among the sources are also official government data, when 

available. Economic loss data can be estimated on the basis of Swiss Re proprietary catastrophe risk models. Also, 

if insured loss data are available, economic loss data are estimated on the basis of the local insurance penetration 

and other event-specific information (such as damages to public infrastructure, number of buildings damaged or 

destroyed etc.). 

 
Minimum threshold apply to inclusion in the database. At least one of the following must apply, for events 

recorded in 2022 (with economic values changing each year following changes to US CPI): 

- Insured losses (claims): $25.2 million (maritime disasters), $50.4 million (aviation), $62.5 million 

(other) 

- Economic losses: $120.6 million 

- Casualties: Dead or missing: 20; Injured: 50; Homeless: 2000 
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Loss values are presented in US$, or if initially expressed in local currency, converted to US$ using year-end 

exchange rates. 

Prior to the 2021 report, country data were then summed into the four World Bank income groups. From the 2021 

report, country data are summed into the four HDI classifications (Very High, High, Medium, Low). Data is also 

presented according to WHO regions and LC groupings.  Further information on the methodology of the sigma 

explorer database can be found here: https://www.sigma-explorer.com/documentation/Methodology_sigma-

explorer.com.pdf. Total insured and uninsured losses are then divided by total GDP for each year and HDI group. 

GDP data are taken from the IMF’s World Economic Outlook (October 2022 Edition). All values reported for this 

indicator are in $2022. 

Data  

1. Swiss Re Institute sigma catastrophe database283 

2. IMF World Economic Outlook (October 2022)284 

Caveats  

Only events with measurable economic losses above the threshold levels are included. Each natural catastrophe 

event recorded is assigned a direct economic loss, and where applicable, an insured loss. Where available, data is 

taken from official institutions, but where not, estimates are calculated. The process for estimation depends on 

what data is available. For example, if loss estimates from insurance market data is available, this data may be 

combined with data on insurance penetration and other event-specific information to estimate total economic 

losses. If only low-quality information is available, such as a description of the number of homes damaged or 

destroyed, assumptions on value and costs are made. Some data (including both losses and GDP values) may be 

revised compared to previous reports, due to updated information or detailed measurement approaches. 

Additional analysis 

Charts showing losses as a fraction of GDP are shown below grouped according to HDI band, WHO region and 

LC group.  The underlying data for these charts is available in the online data explorer. 

 

Figure 101: Insured and uninsured losses from weather-related extreme events vs GDP 2010–2022, by HDI 

band. 

 

https://www.sigma-explorer.com/documentation/Methodology_sigma-explorer.com.pdf
https://www.sigma-explorer.com/documentation/Methodology_sigma-explorer.com.pdf
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Figure 102: Insured and uninsured losses from weather-related extreme events vs GDP 2010–2022, by 

WHO region. 

 

Figure 103: Insured and uninsured losses from weather-related extreme events vs GDP 2010–2022, by LC 

group. 

 

 

Indicator 4.1.2: Costs of Heat-related Mortality 

Indicator authors 

Prof Wenjia Cai, Dr Shihui Zhang 

Methods 
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This indicator used the value of statistical life-year (VSLY) to monetise the years of life lost (YLL) caused 

by heat-related mortality (data for which is provided by indicator 1.1.5). Compared to last year’s method 

that used the value of a statistical life (VSL) to monetise mortality, the usage of VSLY can reflect age 

structure differences of heat-related mortalities across countries. VSLY measures how people value the 

discounted years of remaining life.285 VSL can be interpreted as the discounted sum of VSLY of each year 

remained in life, therefore, mathematically, the VSLY can be derived from the VSL and how many 

remaining years people are expected to live at certain age (Eq.2). As for the change of VSLY to age, some 

studies assumed that VSLY is constant across age span, while others assumed that VSLY will increase before 

mid-age and then decrease till death, which is an Inverted-U shape.286 To avoid ethical challenges caused by 

variation of life across different income levels, the economic costs are expressed as a proportion of GDP and 

the equivalent of annual average income. 169 countries spanning six World Health Organization (WHO) 

regions were included in the estimation. Population and GDP per capita are taken from the World Bank and 

OECD statistics.287,288 

The same ratio between VSLY and GDP-per-capita is assumed for each country for years 2000-2022, and 

data from OCED countries was used as the basis to derive the ratio on account of data availability and 

method consistency across reports in different years. The assumption is shown in Eq. (1), where Y denotes 

the gross domestic product (GDP) per capita, i denotes the country i in WHO regions, t denotes time.  

𝑉𝑆𝐿𝑌𝑖𝑡

𝑌𝑖𝑡
=

𝑉𝑆𝐿𝑌𝑂𝐸𝐶𝐷

𝑌𝑂𝐸𝐶𝐷
                        (1) 

The relationship between VSL and VSLY can be obtained by years of remaining life at death (L) and 

discount rate (r), as shown in Eq.(2). The average VSL for OECD countries (VSLOECD) was estimated at US$ 

3.83 million ($2015) in 2015, and the average GDP per capita for OECD countries was $40,494 ($2015) in 

2015. Equation 2 indicates that the total discounted value of each year’s life value (VSLY) is equal to the 

value in the whole life span (VSL). Here it is assumed the VSLY remains constant for each remaining life 

year because only mortality of people aging over 65 is considered, where the fluctuations of VSLYs are very 

small even under the Inverted-U assumption.286 Here the average remaining years of life for a middle-aged 

person is estimated as 40 years as is  common practice in studies that translate VSL into VSLY. In economic 

studies, the discount rate is usually 3-5%, here we use 3%.  

𝑉𝑆𝐿𝑌𝑖𝑡 =
𝑉𝑆𝐿𝑖𝑡∙𝑟

1−(1+𝑟)−𝐿                      (2) 

In order to calculate the monetised value of years of life loss (YLL) relative to per-capita GDP (R), Eq.(3) 

was applied, where YLL is multiplied by the fixed VSLY-to-GDP per capita-ratio produced by Eq.(1). 

𝑅𝑖𝑡 =
𝑉𝑆𝐿𝑌𝑖𝑡∗𝑌𝐿𝐿𝑖𝑡

𝑌𝑖𝑡
=

𝑉𝑆𝐿𝑌𝑂𝐸𝐶𝐷

𝑌𝑂𝐸𝐶𝐷
∗ 𝑌𝐿𝐿𝑖𝑡                (3) 

In order to calculated to monetised value of years of life loss as a proportion of GDP (V), Eq.(4) was applied, 

where YLL as a proportion of total population (P) is multiplied by the fixed VSLY-to-GDP per capita-ratio 

in OECD countries. 

𝑉𝑖𝑡 =
𝑉𝑆𝐿𝑌𝑖𝑡∗𝑌𝐿𝐿𝑖𝑡

𝐺𝑁𝐼𝑖𝑡
=

𝑉𝑆𝐿𝑌𝑖𝑡∗𝑌𝐿𝐿𝑖𝑡

𝑌𝑖𝑡∗𝑃𝑖𝑡
=

𝑉𝑆𝐿𝑌𝑂𝐸𝐶𝐷

𝑌𝑂𝐸𝐶𝐷
∗

𝑌𝐿𝐿𝑖𝑡

𝑃𝑖𝑡
          (4) 

Country-level results are aggregated according both to WHO regions and HDI level. Considering data 

availability, some countries in WHO regions are not included: Cabo Verde, Sao Tome and Principe, Saint 

Vincent and the Grenadines, US Virgin Islands, Samoa, Eritrea, Andorra, Antigua and Barbuda, Bahrain, 

Barbados, Cook Islands, Dominica, Grenada, Kiribati, Maldives, Malta, Marshall Islands, Micronesia, 

Monaco, Montenegro, Nauru, Niue, Palau, Saint Kitts and Nevis, Saint Lucia, San Marino, Seychelles, 

Singapore, South Sudan, Tonga, Tuvalu. The population of these countries accounts for 0.3% of total 

population in WHO regions. In order to quantify the monetized value of economic costs, we also used the 

world average GDP per capita (2020 USD) to multiply the equivalent of GDP per capita. The world average 

GDP per capita in 2020 USD were derived from GDP per capita in current USD and inflation rate. 
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Data 

1. Heat-related mortality data is provided by Indicator 1.1.6 in section 1. 

2. Population in each country are taken from World Bank.287 

3. GDP per capita in OECD members are taken from OECD statistics.288 

4. VSL in OECD are taken from OECD report on Mortality Risk Valuation in Environment, Health 

and Transport Policies.289 

5. Years of remaining life are obtained from WHO.290 

6. World average GDP per capita in current USD and inflation rate each year are taken from World 

Bank.291,292 

Additional Analysis 

The charts below show the indicator results, according to HDI, WHO and LC groupings. 
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Figure : Monetized value of heat-related mortality losses (in numbers of average incomes expressed as GDP 

per capita) by HDI bands from 2000 to 2022 
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Figure 104: Monetized value of heat-related mortality losses (in numbers of average incomes expressed as 

GDP per capita) by WHO regions from 2000 to 2022 

 

 

 

Figure 105. Monetized value of heat-related mortality losses (in numbers of average incomes expressed as 

GDP per capita) by Lancet Countdown groupings from 2000 to 2022 

 

Caveats 

This indicator could be improved through three perspectives. First, the inequality embedded within the 

economic costs of heat-related mortalities across different social groups are ignored in this indicator due to 

lack of data. In the future, with heat-related mortality data with more detailed social group aggregations, this 

indicator might explore further inequalities. Second, this indicator only considered the direct costs from 

mortalities of elder population, ignoring the potential costs that might derived from it. In the future we will 

consider estimating the direct and indirect costs from heat-related mortalities of elders. Third, currently we 

calculate VSLY for different ageing groups using the same remaining life at death (L). If age-specific YLL 

is provided in the future, this indicator can apply age-specific VSLY according to different remaining life at 

death (L) for different ageing groups. 

Indicator 4.1.3: Potential Loss of Earnings from Heat-Related Labour Capacity Reduction 

Indicator authors 

Dr Daniel Scamman 

Methods  
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Indicator 1.1.4 provides data on heat-related labour capacity loss, in terms of work hours lost (WHLs), at country 

scale across four sectors (services, manufacturing, construction and agriculture) for the years 1990-2022 inclusive. 

In order to calculate potential loss of earnings from this labour capacity loss, it was necessary to compile a dataset 

of average earnings per hour for each of these countries, sectors and years.  

Earnings and income statistics were compiled from the ILOSTAT databases held by the ILO, within the category 

‘Statistics on Wages’. ILOSTAT includes a number of indicators which are of potential relevance to deriving the 

average annual hourly wages for the required countries and years. There are variations in the coverage of these 

indicators, with none having an entirely comprehensive coverage of the countries, sectors and years required for 

this indicator. Multiple ILOSTAT indicators were therefore used to fill as many gaps as possible. The three main 

indicator sets used were: 

• Mean nominal monthly earnings of employees by sex and economic activity: annual 

• Mean nominal monthly earnings of employees by sex and occupation: annual 

• Mean nominal hourly earnings of employees by sex and occupation: annual 

Within each of these indicator sets, the employment activities most accurately reflecting the four required sectors 

were selected. In some cases, more than one such activity was available, due to different reporting conventions 

(for example, the set of activities under ISCO-08 being an update from ISCO-88). Full descriptions of ILO 

indicators and classifications are available on the ILOSTAT website.293 

Each indicator and activity was available in US dollar and local currency units. US dollar units were preferred, 

however in each indicator and activity case, the number of returns in local currency units was slightly higher, so 

these were selected as well in case more data points could be covered by doing so. 

The following tables set out for each of the four employment sectors, the ILOSTAT indicators and activity 

definitions that were selected in order to supply as much of used the required data as possible. In each table the 

indicator, activity and currency combinations are arranged in the order of preference with which they were used. 

 Indicator Activity Currency  

1 
Mean nominal monthly 
earnings of employees by 
sex and economic activity: 
annual 

Aggregate: Trade, transportation, accommodation and food, and 
business and administrative services 

US Dollars 

2 
Aggregate: Trade, transportation, accommodation and food, and 
business and administrative services 

Local currency 

3 
Mean nominal monthly 
earnings of employees by 
sex and occupation: Annual 

ISCO-08: 5. Service and sales workers US Dollars 

4 ISCO-08: 5. Service and sales workers Local currency 

5 ISCO-88: 5. Service workers and shop and market sales workers US Dollars 

6 ISCO-88: 5. Service workers and shop and market sales workers Local currency 

7 
Mean nominal hourly 
earnings of employees by 
sex and occupation: Annual 

ISCO-08: 5. Service and sales workers US Dollars 

8 ISCO-08: 5. Service and sales workers Local currency 

9 ISCO-88: 5. Service workers and shop and market sales workers US Dollars 

10 ISCO-88: 5. Service workers and shop and market sales workers Local currency 

11 

Mean nominal monthly 
earnings of employees by 
sex and economic activity: 
annual 

ISIC Rev.4: N. Administrative and support service activities US Dollars 

12 ISIC Rev.4: N. Administrative and support service activities Local currency 

13 ISIC Rev. 3.1: K. Real estate, renting and business activities US Dollars 

14 ISIC Rev. 3.1: K. Real estate, renting and business activities Local currency 

15 ISIC Rev.2: 8. Financing, insurance, real estate and business services US Dollars 

16 ISIC Rev.2: 8. Financing, insurance, real estate and business services Local currency 

Table 69: Indicators, activity classes and currencies selected to gather data from the ILOSTAT databases 

on earnings in the services sector, in order of preference 
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 Indicator Activity Currency 

1 

Mean nominal 
monthly earnings of 
employees by sex and 
economic activity: 
annual 

Aggregate: Manufacturing US Dollars 

2 Aggregate: Manufacturing Local currency 

3 ISIC Rev.4: C. Manufacturing US Dollars 

4 ISIC Rev.4: C. Manufacturing Local currency 

5 ISIC Rev. 3.1: D. Manufacturing US Dollars 

6 ISIC Rev. 3.1: D. Manufacturing Local currency 

7 ISIC Rev.2: 3. Manufacturing US Dollars 

8 ISIC Rev.2: 3. Manufacturing Local currency 

9 
Mean nominal 
monthly earnings of 
employees by sex and 
occupation: Annual 

ISCO-08: 8. Plant and machine operators, and assemblers US Dollars 

10 ISCO-08: 8. Plant and machine operators, and assemblers Local currency 

11 ISCO-88: 8. Plant and machine operators and assemblers US Dollars 

12 ISCO-88: 8. Plant and machine operators and assemblers Local currency 

13 
Mean nominal hourly 
earnings of employees 
by sex and 
occupation: Annual 

ISCO-08: 8. Plant and machine operators, and assemblers US Dollars 

14 ISCO-08: 8. Plant and machine operators, and assemblers Local currency 

15 ISCO-88: 8. Plant and machine operators and assemblers US Dollars 

16 ISCO-88: 8. Plant and machine operators and assemblers Local currency 

Table 70: Indicators, activity classes and currencies selected to gather data from the ILOSTAT databases 

on earnings in the manufacturing sector, in order of preference 

 Indicator Activity Currency  

1 

Mean nominal 
monthly earnings of 
employees by sex and 
economic activity: 
annual 

Aggregate: Agriculture US Dollars 

2 Aggregate: Agriculture Local currency 

3 ISIC Rev.4: A. Agriculture; forestry and fishing US Dollars 

4 ISIC Rev.4: A. Agriculture; forestry and fishing Local currency 

5 ISIC Rev.3.1: A. Agriculture, hunting and forestry US Dollars 

6 ISIC Rev.3.1: A. Agriculture, hunting and forestry Local currency 

7 ISIC Rev.2: 1. Agriculture, hunting, forestry and fishing  US Dollars 

8 ISIC Rev.2: 1. Agriculture, hunting, forestry and fishing  Local currency 

9 
Mean nominal 
monthly earnings of 
employees by sex and 
occupation: Annual 

ISCO-08: 6. Skilled agricultural, forestry and fishery workers US Dollars 

10 ISCO-08: 6. Skilled agricultural, forestry and fishery workers Local currency 

11 ISCO-88: 6. Skilled agricultural and fishery workers US Dollars 

12 ISCO-88: 6. Skilled agricultural and fishery workers Local currency 

13 
Mean nominal hourly 
earnings of employees 
by sex and 
occupation: Annual 

ISCO-08: 6. Skilled agricultural, forestry and fishery workers US Dollars 

14 ISCO-08: 6. Skilled agricultural, forestry and fishery workers Local currency 

15 ISCO-88: 6. Skilled agricultural and fishery workers US Dollars 

16 ISCO-88: 6. Skilled agricultural and fishery workers Local currency 

Table 71: Indicators, activity classes and currencies selected to gather data from the ILOSTAT databases 

on earnings in the agricultural sector, in order of preference 
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 Indicator Activity Currency  

1 

Mean nominal monthly 
earnings of employees by 
sex and economic activity: 
annual 

Aggregate: Construction US Dollars 

2 Aggregate: Construction Local currency 

3 ISIC Rev.4: F. Construction US Dollars 

4 ISIC Rev.4: F. Construction Local currency 

5 ISIC Rev. 3.1: F. Construction US Dollars 

6 ISIC Rev. 3.1: F. Construction Local currency 

7 ISIC Rev.2: 5. Construction US Dollars 

8 ISIC Rev.2: 5. Construction Local currency 

9 

Mean nominal monthly 
earnings of employees by 
sex and occupation: Annual 

ISCO-08: 9. Elementary occupations US Dollars 

10 ISCO-08: 9. Elementary occupations Local currency 

11 ISCO-88: 9. Elementary occupations US Dollars 

12 ISCO-88: 9. Elementary occupations Local currency 

13 

Mean nominal hourly 
earnings of employees by 
sex and occupation: Annual 

ISCO-08: 9. Elementary occupations US Dollars 

14 ISCO-08: 9. Elementary occupations Local currency 

15 ISCO-88: 9. Elementary occupations US Dollars 

16 ISCO-88: 9. Elementary occupations Local currency 

Table 72: Indicators, activity classes and currencies selected to gather data from the ILOSTAT databases 

on earnings in the manufacturing sector, in order of preference 

A spreadsheet tool was developed to select the relevant data points for all available countries in order of indicator 

preference – if there was no data point for a given country, year and sector in the first priority indicator, the data 

point was sought in the next indicator, and so on until a data point was found, or all indicators had been tried. 

Monthly earnings data were converted to hourly values using a standard assumption of 40 hours per week and 

4.33 weeks per month, i.e., 173.2 hours per month.294 

Data in nominal local currency units were converted to nominal US dollars at market exchange rates using IMF 

International Financial Statistics. Nominal US dollar values were converted to real 2022 US dollar values using 

the US dollar consumer price index from the IMF World Economic Outlook database.  

Even after searching 16 variations of ILO indicator, activity and reporting currency for each sector, there were 

still considerable gaps, with around two thirds of required data points unfilled. In addition, there was a small 

number of clearly erroneous data points – e.g., with hourly earnings rates orders of magnitude too high, possibly 

caused by incorrect recording of the currency in which the data were reported, or by episodes of rapid inflation 

and currency devaluation, with which the recorded market exchange rates were not keeping track. 

In order to fill the gaps with no data, as well as to correct data points that were clearly erroneous, a gap filling 

process was undertaken, using other data points to stand in for the missing or erroneous data. This process was 

undertaken after all of the data had been corrected to real 2022 US dollar values, so that all of the data were 

already expressed in constant values. Wherever possible, gaps were filled using data from a different year but 

from the same sector and country. Where data were available in years before and after the gaps in the same sector 

and country, linear interpolation was used to fill the gaps.  If no future year was available, data were filled using 

the nearest past year. Likewise, if no previous year was available, the nearest future year was used.  If there were 

no data points available at all for a certain sector or country, the data were taken from the same sector of a different 

country that was as comparable as possible to the country with missing data. Identification of a reasonably 

comparable country was achieved primarily by selecting one as close as possible on the current HDI scale, within 

the same or similar region and current World Bank Income Group (WBIG), of a similar population, and with a 

reasonable number of datapoints. It should be recognised, however, that countries that currently have similar HDI 

or WBIG bandings could have had quite different bandings in the past. 

A small number of countries with no wage data or HDI value could not be included in the analysis as no suitable 

substitute could be found. 

This process resulted in estimates of hourly earnings for the four sectors for 188 countries for the years 1990-2022 

inclusive (the period for which WHL data are available from indicator 1.1.4), for 188 countries. These hourly 

earnings data were multiplied by the corresponding values for work hours lost (WHL) in each country, sector, and 
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year, to provide a quantification of potential earnings lost. The WHLs used assumed that work in the agricultural 

and construction sectors took place in the sun. 

These total lost earnings were expressed as a percentage of the country’s GDP in each relevant year. GDP data in 

nominal US dollars at market exchange rates were downloaded from the IMF World Economic Outlook database, 

and rendered in constant 2022 US dollars using the GDP deflator index from the same source. Gaps in this GDP 

data for some countries and years imposed a small further restriction on the coverage of this indicator, and not all 

of the same countries are available for all years. The maximum country-coverage of the indicator is 183 countries, 

during the years 2002–2022 inclusive. Results are presented as the average value for countries in each of the HDI 

bandings, WHO regions and Lancet Countdown (LC) regions.  

Data  

1. Data on working hours lost from indicator 1.1.4 

2. Data on earnings by country and sector from ILOSTAT295 

3. Exchange rate data from IMF International Financial Statistics296 

4. US Dollar CPI and GDP deflator index from the IMF World Economic Outlook database284 

5. Country GDP data from the IMF World Economic Outlook database284 

6. World Bank Income Groups297 

Caveats  

There are several important caveats associated with the analysis: 

• The ILOSTAT data do not cover all of the countries, years and sectors required, hence some gap filling 

was required, as described above. Whilst reasonable care has taken to identify appropriate estimates, 

gaps filled in the data are subject to uncertainties 

• Whilst reasonable efforts have been made to correct for clearly erroneous data points, the analysis is 

dependent on the reliability of the ILOSTAT data, which could be subject to uncertainties in reporting, 

collection and processing 

• The use of different combinations of ILOSTAT indicators and activity classes, rather than one single 

indicator and one activity class per sector, was necessary to increase data coverage as much as possible. 

Nonetheless this entails risks of inconsistencies, for example associated with different classifications and 

reporting methods 

• The conversion of monthly data to hourly was carried out on the basis of a standard assumption of 4.33 

weeks per month, and 40 hours per week. Real monthly working times will vary from these assumptions 

to a greater or lesser extent in different countries 

All of these issues mean that caution should be exercised when examining results for any particular country. In 

addition, it must be emphasised that the results produced are the potential loss of earnings, rather than actual. The 

indicator is not based on evidence as to whether time off work was in fact taken. Further, if time was taken off 

work, the bearer of the costs of the lost labour could have varied between countries and sectors. In some instances, 

workers may have been able to claim sick pay, in which case the losses would have been borne by the employer 

through paying for non-productive time. In other instances, no arrangements for sick pay may have been in place, 

in which case it would have been the worker who would have borne the cost through a direct loss of earnings due 

to the inability to work. 

Finally, the indicator by definition is an estimate of potential loss of earnings from formal paid sectors. In many 

countries informal and unpaid labour is also significant. Such activities could include domestic work and small-

scale agriculture. The impacts on productivity and health of extreme heat on workers involved in so-called 

informal sectors, would be in addition to the monetised estimates quantified by this indicator. 

Additional analysis 

The following graphs present the results according to HDI, WHO, and LC groupings and also changes in results 

1990-2022 according to HDI group. 
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Figure 106: Average potential loss of earnings in 2022 per HDI country group as a result of potential labour 

loss due to heat exposure. Losses are presented as share of GDP and sector of employment.  
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Figure 107: Average potential loss of earnings from heat-related labour capacity reduction in 2022 as a 

share of GDP according to WHO region and sector of employment 

 

Figure 108: Average potential loss of earnings from heat-related labour capacity reduction in 2022 as a 

share of GDP according to LC grouping and sector of employment 
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Figure 109: Average potential loss of earnings from heat-related labour capacity reduction as a share of 

GDP for low HDI countries, by sector of employment 

 

 

Figure 110. Average potential loss of earnings from heat-related labour capacity reduction as a share of 

GDP in medium HDI countries, by sector of employment.  
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Figure 111. Average potential loss of earnings from heat-related labour capacity reduction as a share of 

GDP in high HDI countries, by sector of employment.  

 

 

Figure 112. Average potential loss of earnings from heat-related labour capacity reduction as a share of 

GDP for very high HDI countries, by sector of employment. 

 

 

Indicator 4.1.4: Costs of the Health Impacts of Air Pollution 

Indicator authors 

Dr Gregor Kiesewetter, Dr Daniel Scamman 
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Methods  

Indicator 3.3 provides data on deaths attributable to both natural and anthropogenic ambient air pollution. Years 

of life lost (YLLs) were calculated from the age-specific attributable deaths by summing over the remaining life 

expectancy at the age of death for each attributable death. To determine YLLs attributable to anthropogenic causes 

only, the total YLLs are reduced to the country- and year-specific proportion of total deaths attributable to 

anthropogenic sources only in indicator 3.3. The YLLs calculated this way are a conservative estimate since the 

remaining life expectancy in real world conditions are used, rather than hypothetical conditions with no pollution, 

which would be larger. YLLs were calculated for 140 individual countries for the years 2005, 2010, 2015 and 

2020.  Each country was then classified according to its HDI category, WHO region and LC grouping.298,299 For 

the WHO region and LC grouping calculations, the YLL data for 43 additional countries in three ‘rest of world’ 

regions from the GAINS model were also included (see Table 73), though population and GDP data had to be 

excluded for some of these countries where data was unavailable as shown. From 2023, three countries in a fourth 

GAINS region (Former Soviet Union) were included as separate countries (Tajikistan, Turkmenistan and 

Uzbekistan). Also the US Virgin Islands have been included in the Americas WHO region, and for the LC 

groupings French Guiana is included in the SIDS region rather than South and Central America, and Belize in 

South and Central America rather than SIDS.  It was not possible to include countries in the three GAINS regions 

in the HDI classification, due the heterogeneity of classifications of the countries that constitute each region. 

The YLLs for each category and region were then summed. To determine the economic value of the YLLs for 

each category and region relative to per capita average annual income in each, the results were multiplied by the 

fixed ratio of the Value of a Statistical Life Year (VSLY) to GDP per capita derived by indicator 4.1.2. To calculate 

the economic value of the YLLs relative to total GDP for each year, the results of this first calculation were 

multiplied by average GDP per capita (calculated from the sum of GDP for each category and region, inflated to 

$2022 from current prices, divided by the sum of the population for each category and region), and then divided 

by the sum of GDP in $2022 for the category or region in question. 

GDP and GDP inflator data were taken from the International Monetary Fund (IMF), and population data were 

taken from the United Nations (UN). The data and methods used to calculate the fixed ratio between VSLY and 

GDP per capita are described in indicator 4.1.2. 

GAINS 

Region 
WHO Region LC Group Country 

Caribbean 

(CARB) 
Americas SIDS 

Anguilla, Antigua and Barbuda, Aruba, Bahamas, 

Barbados, British Virgin Islands*, Caribbean Netherlands*, 

Cayman Islands*, Cuba, Curaçao*, Dominica, Dominican 

Republic, French Guiana*, Grenada, Guadeloupe*, 

Guyana, Haiti, Jamaica, Martinique*, Puerto Rico, Saint 

Lucia, Saint Vincent and the Grenadines, Suriname, 

Trinidad and Tobago, United States Virgin Islands* 

Central 

America 

(CEAM) 

Americas 
South and 

Central America 

Belize, Costa Rica, Guatemala, Honduras, Nicaragua, 

Panama, El Salvador 

Middle 

East 

(MIDE) 

Eastern 

Mediterranean 
Asia 

United Arab Emirates, Bahrain, Iraq, Jordan, Kuwait, 

Lebanon, Oman, Occupied Palestinian Territory, Qatar, 

Syrian Arab Republic, Yemen 

*Population and GDP excluded from the calculations due to lack of data of either one or other data point. 

Table 73: Countries in GAINS model ‘rest of word’ region group included in the calculation of costs of air 

pollution for WHO and LC groupings  

Data  

1. IMF World Economic Outlook (October 2022)284 

2. UN World Population Prospects300 
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Caveats  

See indicator 3.3, for caveats related to the calculation of reduced life expectancy.  

Caveats regarding the calculation of VSLY are discussed under indicator 4.1.2. Countries not listed in the tables 

above have been excluded from the analysis, due to the lack of individual characterisation in the model used to 

calculate YLLs. Democratic People's Republic of Korea is excluded from the analysis due to the lack of reliable 

GDP data. Somalia is excluded from the HDI analysis, as it is not classified. Data for 2022 differs to those 

presented in the 2022 report due to updated data. 

Additional analysis 

The monetized losses from premature mortality due to air pollution according to HDI group is shown in the main 

report.  Figure 113 and Figure 114 show the monetized losses according to WHO region and LC group. 

 

Figure 113. Monetized losses from premature mortality due to air pollution according to WHO region. 

Columns represent losses as numbers of average incomes, lines as losses vs GDP. 
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Figure 114. Monetized losses from premature mortality due to air pollution according to LC group. Solid 

lines represent losses as numbers of average incomes, dashed lines as losses vs GDP. 

 

4.2: The Economics of the Transition to Net Zero-Carbon Economies 

Indicator 4.2.1: Zero-carbon Energy Investment 

Indicator authors 

Dr Daniel Scamman 

Methods  

The data for this indicator is sourced from the annual IEA World Energy Investment publication.301 Key categories 

of investment are defined as follows 

Clean energy – investment in renewable power, energy efficiency, electricity networks, electric vehicles, battery 

storage, nuclear, low-emission fuels (modern liquid and gaseous bioenergy, low-emission hydrogen and low-

emission hydrogen-based fuels), CCUS (carbon capture utilisation and storage), and other end-use (renewables 

for end use and electrification in the buildings, transport and industrial sectors). 

Fossil fuels – investment in coal, oil and gas electricity generation capacity and fuel supply without CCS. 

Power sector – investment in coal, oil, gas, nuclear and renewable electricity generation capacity, and electricity 

networks and battery storage. Renewables includes pumped-hydro storage. 

Other supply – investment in coal, natural gas, oil and renewable energy supply for non-electricity purposes. This 

includes upstream mining, drilling and pipeline infrastructure. Renewable energy includes modern liquid and 

gaseous bioenergy, low-carbon hydrogen, as well as hydrogen-based fuels that do not emit any CO2 from fossil 

fuels directly when used and also emit very little when being produced. 
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Energy efficiency – An energy efficiency investment is defined as the incremental spending on new energy-

efficient equipment or the full cost of refurbishments that reduce energy use. 

For most sectors, ‘investment’ is defined as ongoing capital spending on assets. For some sectors, such as power 

generation, this investment is spread out evenly from the year in which a new plant or upgrade of an existing one 

begins its construction to the year in which it becomes operational. For other sources, such as upstream oil and 

gas and liquefied natural gas (LNG) projects, investment reflects the capital spending incurred over time as 

production from a new source ramps up or to maintain output from an existing asset. This definition and differs 

from the definition previously employed by the IEA before 2019, in which investment was defined as overnight 

capital expenditure. 

Data  

1. IEA World Energy Investment 2023.301  

Caveats  

Other areas of expenditure, including operation and maintenance, research and development, financing costs, 

mergers and acquisitions or public markets transactions, are not included. Investment estimates are derived from 

IEA data for energy demand, supply and trade, and estimates of unit capacity costs, For more information, see 

IEA World Energy Investment 2023. 

Additional analysis 

The variation in clean energy and fossil fuel investment for 2015-2022 is shown below. 

 

Figure 115: Global energy investment in clean energy (columns) and fossil fuels (solid line). 

 

Indicator 4.2.2: Employment in Renewables and Fossil Fuel Industries 

Indicator authors 

Dr Daniel Scamman 

Methods  
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The data for this indicator is sourced from IRENA (renewables) and IBISWorld (fossil fuel extraction). Renewable 

industries included are: 

• Hydropower; 

• Solar heating/cooling; 

• Solar photovoltaic; 

• Wind energy; 

• Bioenergy; 

• Other technologies. 

Bioenergy includes liquid biofuels, soil biomass and biogas. ‘Other technologies’ includes geothermal energy, 

ground-based heat pumps, concentrated solar power, municipal and industrial waste, and ocean energy. Fossil 

fuel extraction values include direct employment, whereas renewable energy jobs include direct and indirect 

employment (e.g., equipment manufacturing), except for large hydropower (direct employment only). 

Due to an improvement in data collection and estimation methodology, employment values reported for fossil 

fuel extraction are in some years substantially higher than those reported in the 2018 Lancet Countdown report. 

Similarly, an improvement to the methodology for estimating hydropower has altered historic values for 

Hydropower (previously called ‘large’ hydropower), and Other Technologies (which previously included small 

hydropower). From 2018, ‘Other Technologies’ now also includes employment related to ground-based heat 

pumps. 

Data  

1. Data for employment in renewables from IRENA302 

2. Data for employment in fossil fuel extraction from IBISWorld: oil and gas exploration and production; 

and coal mining303,304 

Caveats  

Fossil fuel extraction values include direct employment, whereas renewable energy jobs include direct and indirect 

employment (e.g., equipment manufacturing), with the exception of hydropower. 

Future form of the indicator 

 

Additional analysis 

 

 Million Jobs 

 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Solar Photovoltaic 1.36 2.27 2.49 2.77 3.09 3.37 3.68 3.75  3.98  4.29 

Bioenergy 2.4 2.5 2.99 2.88 2.74 3.05 3.18 3.58  3.52  3.44 

Hydropower 1.66 2.21 2.04 2.16 2.06 1.99 2.05 1.96  2.18  2.37 

Wind Energy 0.75 0.83 1.03 1.08 1.16 1.15 1.16 1.17  1.25  1.37 

Solar Heating/Cooling 0.89 0.5 0.76 0.94 0.83 0.81 0.8 0.82  0.82  0.77 

Other Technologies 0.22 .023 0.19 0.2 0.24 0.16 0.18 0.18  0.27  0.45 

Renewables Total 7.28 8.54 9.5 10.03 10.12 10.53 11.05 11.46 12.02 12.69 

Fossil Fuel Extraction 11.79 12.16 12.38 12.35 12.36 12.05 12.07 11.82 11.22 13.42 

Table 74: Employment in renewable energy and fossil fuel extraction industries. 
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Indicator 4.2.3: Funds Divested from Fossil Fuels 

Indicator authors 

Dr Daniel Scamman 

Methods  

The data for this indicator is collected and provided by stand.earth. Prior to this report, they represented the total 

assets (or assets under management, AUM) for institutions that have publicly committed to divest (for which data 

is available), with non-US$ values converted using the market exchange rate when the commitment was made, 

and thus did not directly represent the actual sums divested from fossil fuel companies. For the data used in this 

report, AUM data has been updated to 2022 levels. A company is committed to ‘divestment’ if it falls into any of 

the following five categories: 

- ‘Fossil Free’ - An institution or corporation that does not have any investments (direct ownership, shares, 

commingled mutual funds containing shares, corporate bonds) in fossil fuel companies (coal, oil, natural gas) and 

committed to avoid any fossil fuel investments in the future 

- ‘Full’ - An institution or corporation that made a binding commitment to divest (direct ownership, shares, 

commingled mutual funds containing shares, corporate bonds) from any fossil fuel company (coal, oil, natural 

gas). 

- ‘Partial’ - An institution or corporation that made a binding commitment to divest across asset classes from 

some fossil fuel companies (coal, oil, natural gas), or to divest from all fossil fuel companies (coal, oil, natural 

gas), but only in specific asset classes (e.g. direct investments, domestic equity). 

- ‘Coal and Tar Sands’ - An institution or corporation that made a binding commitment to divest (direct 

ownership, shares, commingled mutual funds containing shares, corporate bonds) from any coal and tar sands 

companies. 

- ‘Coal only’ - An institution or corporation that made a binding commitment to divest (direct ownership, shares, 

commingled mutual funds containing shares, corporate bonds) from any coal companies. 

Nine organisations that were originally recorded as non-healthcare institutions have been considered as such for 

the purpose of this indicator (London School of Hygiene and Tropical Medicine, The Royal College of General 

Practitioners, New Zealand Nurses Organisation, HESTA, HCF, Berliner Ärzteversorgung, Doctors for the 

Environment Australia, the Royal College of Emergency Medicine, and the Society for the Psychological Study 

of Social Issues). Divestment commitments by the American Medical Association, which divested in 2018, was 

not included in the data provided by 350.org, and was added separately. 

Data  

1. Stand.earth and Global Fossil Fuel Divestment Commitments Database305 

Caveats  

Data on the number of institutions that have divested, and the value of their assets is dependent on institutions 

reporting this information to Stand.earth. 

Additional analysis 

The cumulative value of divestment (both global total and for healthcare institutions) is presented below (Table 

75). Organisations that have divested but for which no date of divestment (a total of $2.56 billion) are recorded in 

a separate column, with the total assumed to begin in 2008 in the absence of more detailed information. 

 US$ million (2022 data) 
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Global 

Global (including 

data with no 

divestment date) 

Healthcare Institutions 

2008  $16   $2,562,392   $-    

2009  $17   $2,562,392   $-    

2010  $17   $2,562,392   $-    

2011  $84   $2,562,460  $-    

2012  $3,773   $2,566,148   $-    

2013  $9,337   $2,571,712  $-    

2014  $441,744   $3,004,120   $37,809  

2015  $2,569,415   $5,131,791  $38,103  

2016  $3,559,438   $6,121,814   $41,010  

2017  $5,571,959   $8,134,335   $53,191 

2018  $8,875,191   $11,437,567   $54,107  

2019  $12,426,839   $14,989,215   $54,120  

2020  $28,468,322   $31,030,697   $54,187  

2021  $37,890,410   $40,452,785   $54,187 

2022 $37,950,405 $40,511,479 $54,187 

Table 75: Cumulative fossil fuel divestment. 

Due to confidentiality issues, the full dataset is not available for publication. However, interested readers may 

visit the www.divestmentdatabase.org for further information. 

 

Figure 116. Cumulative divestment – Global total and in healthcare institutions 

 



187 

 

Indicator 4.2.4: Net Value of Fossil Fuel Subsidies and Carbon Prices 

Indicator authors 

Dr Daniel Scamman 

Methods  

Fossil Fuel Subsidies 

Data for fossil fuel subsidies were taken from two sources. The IEA provides data on fossil fuel consumption 

subsidies for 42 countries, calculated using its ‘price gap’ approach – the difference between the end-user prices 

paid for fossil fuels in the country, and reference prices that account for the full cost of supply.306,307  However, 

the countries provided in this list are mainly non-OECD. The OECD itself provides estimates of fossil fuel 

subsidies within the 38 OECD countries, plus Argentina, Armenia, Azerbaijan, Belarus, Brazil, China, Georgia, 

India, Indonesia, Moldova, Russia, South Africa and Ukraine—a total of 51 countries.308 OECD’s estimates are 

derived from a bottom-up inventory of subsidy mechanisms within each country, and include production and 

consumption support, infrastructure investments, incentives and R&D. It divides the type of support into three 

broad categories: Consumer Support Estimate (CSE), Producer Support Estimate (PSE) and General Services 

Support Estimate (GSE).  

Combining the IEA and OECD datasets allows a coverage of 81 countries, after accounting for overlaps and the 

omission of countries not covered by the Lancet Countdown. The OECD describes an approach for combining 

these two datasets, and reconciling different estimates for the countries covered by both.309 This involves selecting 

line items in the OECD inventory that correspond to the price-gap definition of subsidies that is the basis of the 

IEA data – i.e. measures that bring about reduced consumer prices: ‘conceptually, an OECD estimate derived 

from individual measures that capture transfers to consumers from producers and taxpayers should match the IEA 

price-gap estimates’ (p.22-3).309 

The description of this approach suggests that in the few cases of countries whose subsidies have been calculated 

by both OECD and IEA, the OECD estimate would be expected to be the larger of the two.309 However, analysis 

of overlapping countries suggests that it is in fact more often the IEA estimate that is larger. This analysis is 

described in more detail in the appendix of the 2020 Lancet Countdown report. The conclusion drawn from this 

is that attempting to separate some line items from the OECD estimates that seem more directed at consumers is 

not a reliable way of reconciling the two estimates – on the contrary, in several cases it makes the gap between 

the two larger by making the OECD estimate smaller. Consequently, in considering countries that overlap between 

the two datasets as part of preparing this indicator, a comparison was made simply between the total OECD 

estimate and the total IEA estimate. 

Following a simple rule of thumb proposed by OECD, in order to decide which estimate to use in overlapping 

cases, the source that produces the larger cumulative total for a given country over the years being considered, 

was the one chosen as the source for that country for this indicator.309  

Carbon prices and revenues 

Information on carbon prices and carbon pricing revenues was sourced from the World Bank Carbon Pricing 

Dashboard.310 Revenues from each recorded instrument were allocated to the nation state within which the 

instrument operated. Shares of the EU ETS revenues were allocated to each of the participants in the EU ETS – 

that is the 28 members of the EU (which included the UK for the years considered in this analysis), plus Iceland 

and Norway. The UK was allocated a share of ETS until the end of 2020 as, although the UK left the EU on 31 

January 2020, the UK remained subject to EU rules until 31 December 2020 with the UK’s own ETS replacing 

its participation in the EU ETS from 1 January 2021. Liechtenstein is also an EU ETS member but could not be 

included in this analysis due to lack of CO2 emissions data. The allocation of EU ETS revenues was made to 

participating states on the basis of their share of the emissions of all EU ETS states, calculated using IEA CO2 

emissions data.311 This was considered an acceptable simplification given that for the period 2013–2020, 88% of 

allowances were allocated for auction to participating states in proportion to their emissions.312 Also carbon 

pricing revenue data was included for El Salvador in 2010, but none has been reported since. 
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Countries were included in the analysis if data were available for CO2 emissions, and either fossil fuel subsidies 

or carbon pricing instruments. This yielded a list of 87 countries in 2020 accounting for 93% of global CO2 

emissions.311 

Net carbon price and revenue calculations 

In reality at present, both carbon prices and fossil subsidies are typically applied to individual sectors or fuels, and 

do not cover the entire economy. Within different particular jurisdictions the sectors covered by subsidies and 

carbon prices are often not identical. As such the only way of producing a consistent indicator across multiple 

countries was to average out both subsidies and prices across the CO2 emissions of the whole economy, resulting 

in net average economy-wide carbon prices and revenues. Each country’s total fossil fuel subsidies were 

subtracted from its total carbon price revenues to produce a net carbon revenue. These figures were divided by 

the relevant total country CO2 emissions for each year, using data from the IEA,311 resulting in the net carbon 

price. The net carbon revenue was expressed as a proportion of national expenditure on health, using current 

annual (i.e. not including capital) health expenditure data from the WHO’s Global Health Expenditure 

Database.313 

Currency standardisation 

All money values are expressed in real 2022 US$. Both the OECD Inventory and the IEA fossil fuel subsidy 

database provide data in real 2021 US$. These units were corrected to real 2022 values, using the GDP deflator 

for the US dollar, from the IMF. The World Bank carbon pricing revenue data and the WHO health expenditure 

data are given in nominal US dollars, so again the US GDP deflator from IMF was applied to correct to real 2022 

values.  

Data  

1. Fossil fuel subsidies data from the IEA and OECD306,308 

2. Carbon pricing data from the World Bank Carbon Pricing Dashboard310 

3. CO2 emissions from fuel combustion from IEA311 

4. Health expenditure data from WHO313 

5. US Dollar GDP deflator index from the IMF World Economic Outlook database284 

Caveats  

The principal caveat is that the indicator is strongly dependent on the reliability of the main datasets from the IEA, 

OECD and World Bank. It is possible that data on individual countries may not be fully comprehensive due to 

reporting errors, lack of information or other issues, as indeed is acknowledged by OECD.309 The indicator should 

be considered as a way of illustrating global trends, and caution should be exercised in attempting to draw out 

specific conclusions relating to individual countries covered by the indicator. 

The nature of indicators that draw on multiple datasets is that the most recent year on which they can report is 

defined by the most recent year that is common to all datasets used. In this case that year was 2020, which was 

due to this being the most recent complete year for both CO2 emissions from fuel combustion and health 

expenditure.   

The economy-wide net carbon price was derived by dividing fossil fuel subsidies and carbon pricing revenues by 

total CO2 emissions. This fits well with the subsidies, as these are for fossil fuels, the principal source of CO2. 

However, some of the carbon pricing instruments from which the revenue was assessed are not only for fossil fuel 

combustion but apply to other sectors and non-CO2 gases. There is therefore a slight inconsistency between the 

sectoral coverage of the subsidies and the carbon pricing instruments. 

Additional analysis 

The relevant section in the main report shows net carbon prices, net carbon revenues, and net carbon revenues as 

a proportion of health spending, by HDI grouping, for the year 2020. The following graphs show results for the 

same three indicators for WHO and LC groupings.  Due to the finite number of countries included in the indicator, 

some classifications have fewer inclusions than others, as shown in the tables below for 2020 data. Note the 

number of countries included has grown since 2010 as additional countries have begun reporting data (except for 

El Salvador, which reported data in 2010 but not since). Also shown are charts for the same three indicators with 
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all countries grouped together for the years 2010–2020 inclusive. Results for years 2016–2017 differ from those 

reported in the 2020 Countdown report due to an increased number of countries included in the analysis. 

HDI Band Number Countries 

Low 2 Nigeria, Pakistan 

Medium 7 Angola, Bangladesh, Bolivarian Republic of Venezuela, Bolivia, Ghana, India, Iraq 

High 21 

Algeria, Armenia, Azerbaijan, Brazil, Bulgaria, China, Colombia, Ecuador, Egypt, Gabon, 

Indonesia, Islamic Republic of Iran, Libya, Mexico, Republic of Moldova, South Africa, Sri 

Lanka, Turkmenistan, Ukraine, Uzbekistan, Vietnam 

Very High 57 

Argentina, Australia, Austria, Bahrain, Belarus, Belgium, Brunei Darussalam, Canada, Chile, 

Costa Rica, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Georgia, Germany, 

Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Kazakhstan, Kuwait, Latvia, 

Liechtenstein, Lithuania, Luxembourg, Malaysia, Malta, Netherlands, New Zealand, Norway, 

Oman, Poland, Portugal, Qatar, Republic of Korea, Romania, Russian Federation, Saudi Arabia, 

Singapore, Slovakia, Slovenia, Spain, Sweden, Switzerland, Thailand, Trinidad and Tobago, 

Turkey, United Arab Emirates, United Kingdom, United States of America 

Total 87  

 

Table 76: Inclusions in HDI Groupings for Indicator 4.2.4 for 2020 data 

WHO Region Number Countries 

Africa 6 Algeria, Angola, Gabon, Ghana, Nigeria, South Africa 

Americas 12 
Argentina, Bolivarian Republic of Venezuela, Bolivia, Brazil, Canada, Chile, Colombia, 

Costa Rica, Ecuador, Mexico, Trinidad and Tobago, United States of America 

Eastern 

Mediterranean 
11 

Bahrain, Egypt, Iraq, Islamic Republic of Iran, Kuwait, Libya, Oman, Pakistan, Qatar, 

Saudi Arabia, United Arab Emirates 

Europe 44 

Armenia, Austria, Azerbaijan, Belarus, Belgium, Bulgaria, Croatia, Cyprus, Czechia, 

Denmark, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, Iceland, Ireland, 

Israel, Italy, Kazakhstan, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, 

Netherlands, Norway, Poland, Portugal, Republic of Moldova, Romania, Russian 

Federation, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, 

Ukraine, United Kingdom, Uzbekistan 

South-East Asia 5 Bangladesh, India, Indonesia, Sri Lanka, Thailand 

Western Pacific 9 
Australia, Brunei Darussalam, China, Japan, Malaysia, New Zealand, Republic of Korea, 

Singapore, Vietnam 

Total 87  

Table 77: Inclusions in WHO Groupings for Indicator 4.2.4 for 2020 data 

LC Group Number Countries 

Africa 8 Algeria, Angola, Egypt, Gabon, Ghana, Libya, Nigeria, South Africa 

Asia 29 

Armenia, Azerbaijan, Bahrain, Bangladesh, Brunei Darussalam, China, Cyprus, 

Georgia, India, Indonesia, Iraq, Islamic Republic of Iran, Israel, Japan, Kazakhstan, 

Kuwait, Malaysia, Oman, Pakistan, Qatar, Republic of Korea, Saudi Arabia, Sri 

Lanka, Thailand, Turkey, Turkmenistan, United Arab Emirates, Uzbekistan, Vietnam 

Europe 35 

Austria, Belarus, Belgium, Bulgaria, Croatia, Czechia, Denmark, Estonia, Finland, 

France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechtenstein, 

Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of 

Moldova, Romania, Russian Federation, Slovakia, Slovenia, Spain, Sweden, 

Switzerland, Ukraine, United Kingdom 

Northern America 2 Canada, United States of America,  

Oceania 2 Australia, New Zealand,  

SIDS 2 Singapore, Trinidad and Tobago 

South and Central 

America 
9 

Argentina, Bolivarian Republic of Venezuela, Bolivia, Brazil, Chile, Colombia, Costa 

Rica, Ecuador, Mexico 

Total 87  

Table 78: Inclusions in LC Groupings for Indicator 4.2.4 for 2020 data 
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Figure 117: Net carbon prices (left), net carbon revenues (centre), and net carbon revenue as a share of current 

national health expenditure (right), across 87 countries in 2020, arranged by HDI country group: low (n=2), 

medium (n=7), high (n=21) and very high (n=57). Boxes show the interquartile range (IQR), horizontal lines 

inside the boxes show the medians, and the brackets represent the full range from minimum to maximum. 

 

 

Figure 118: Net carbon prices, net carbon revenues, and net carbon revenue as a share of current national health 

expenditure, across 87 countries in 2020, grouped by WHO region.  Boxes show the interquartile range (IQR), 

horizontal lines inside the boxes show the medians, and the brackets represent the full range from minimum to 

maximum. 
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Figure 119: Net carbon prices, net carbon revenues, and net carbon revenue as a share of current national health 

expenditure, across 87 countries in 2020, grouped by LC grouping.   

 

 

Figure 120. Net carbon prices for all countries included in the analysis, 2010–2020 inclusive. 
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Figure 121. Net carbon revenue for all countries included in the analysis, 2010–2020 inclusive. 

 

 

Figure 122. Net carbon revenue expressed as the equivalent share of current (i.e., not capital) annual health 

spending, for all countries included in the analysis, 2010–2020 inclusive. 

 

Indicator 4.2.5: Production and Consumption-based Attribution of CO2 and PM2.5 
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Environmentally Extended Multi-Regional Input-Output Analysis 

There are two approaches to measure emissions: production-based (sometimes referred to as territorial-based) 

accounting and consumption-based accounting. Production-based emissions occur within the geographical 

territory of a nation, while consumption-based emissions encompass the emissions from the nation’s domestic 

final consumption, as well as those caused by the production of its imports. Since both CO2 emissions via climate 

change, and air pollution directly, are detrimental to human health, understanding of the responsibilities of 

emissions across borders is crucial in the globalised world. This indicator estimates PM2.5 and CO2 emissions 

embodied in international trade, and then calculates national PM2.5 and CO2 emissions from the consumption 

perspective. Thus, the responsibility of these emissions and the associated environmental and human health 

consequences can be distributed for international environmental policy formulation. 

Environmentally extended multi-regional input-output (EEMRIO) analysis is used in the calculation of 

consumption-based emissions.314 The EEMRIO analysis can reflect production and consumption structures and 

interdependencies between economic sectors across regions. The relationships between final use and emissions 

are estimated via Leontief inverse matrix, which is expressed as follows in equation (1): 

 C = E ∙ L ∙ F = E ∙ (I − A)−1 ∙ F (1) 

C is the total consumption-based emissions, CO2 or PM2.5 emissions in this case. It is mapped directly to emissions 

inventories. E is the row vector of the production-based emission intensity defined as the emissions per unit of 

output. F is the vector of final demand. and L is the Leontief inverse matrix calculated by (I-A)-1, where I is the 

identity matrix, and A is the technical coefficient matrix describing the inter-sectoral and inter-regional flows per 

unit of output. 

Consumption-based accounting encompasses emissions from domestic final consumption and those caused by the 

production of its imports, while production-based accounting measures emissions which take place within national 

territory. The above relationship can also be expressed as follows:  

 CCBA = CPBA − Cexp + Cimp (2) 

where CCBA is the consumption-based emissions, Cimp is the emissions embodied in imports, CPBA is the production-

based emissions, and Cexp is the emissions embodied in exports. 

 

Emission Inventory Mapping with GAINS 

To construct the production-based PM2.5 emission inventory with the GAINS model, the workflow illustrated in 

Figure 123 is followed. First, an intermediary aggregation level to which emissions from the GAINS source 

categories are aggregated is defined.1 In a second step these aggregated or grouped emissions are distributed 

among the relevant MRIO sectors according to a specific rule. This process is repeated until the emissions from 

all relevant GAINS source categories havWG4 e been mapped to the relevant MRIO sectors.  

 

1 In most cases GAINS sectors are used. However, in a few cases the relevant source categories are sector-fuel 

combinations in the GAINS system: for example, in the power plant sectors, coal-, oil-, gas-, and biomass-fired 

plants are distinguished [and combustion free generation] so as to be able to map directly to the corresponding 

MRIO sectors.  
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Figure 123. Generic approach for mapping the GAINS sectoral emissions to MRIO sectors. 

In practice, the GAINS source categories are clustered into three groups, so that there are three rounds of 

mappings. These groupings correspond to energy-related emissions (except trucking, see below), process-related 

emissions, and trucking-related emissions. In a final step, for each MRIO sector the contributions from the three 

rounds of mappings are summed so that a total emission can be associated with each MRIO sector. In all 

calculations determining the relative energy share of an MRIO sector in the total energy, the use of electricity is 

ignored, since the emissions from electricity production are accounted for elsewhere. 

On the GAINS side, trucking is related to the sectors TRA_RD_HDT and TRA_RD_LD4T and the fuel-related 

activities, such as diesel, gasoline, LPG etc, as well as km-related emissions such as abrasion, tyres and braking. 

On the MRIO side, diesel consumption from road transport by MRIO sector is used to determine the share of each 

sector in the total. In some countries significant amounts of diesel is also used by cars, a fact that is neglected 

here. Figure 124 illustrates the mapping process for trucking-related emissions between GAINS and the MRIO 

sectors. 

 

 

Figure 124 Mapping of trucking-related emissions 

The trucking-related emissions in region r for MRIO sector m are thus calculated as: 
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 Em𝑟(𝑚, 𝑡) = Em𝑟(TRUCKS) ⋅ sh𝑟(𝑚,diesel) (3) 

 

where 

 
sh𝑟(𝑚,diesel) =

TROA𝑟(𝑚,diesel)

∑ TROA𝑟(𝑚′,diesel)𝑚′
 

(4) 

 

is the share of sector m in the road transport related diesel consumption in region r, and  Em𝑟(TRUCKS) are the 

total trucking related emissions in region r as calculated by GAINS. 

Once the trucking-related emissions and energy use has been separated out what is relevant for distributing the 

remaining energy (but not trucking-related emissions) is generally the total final energy consumption minus the 

diesel consumption in TROA. Thus, non-trucking related final energy consumption excluding electricity is 

referred to as the relevant final energy consumption in each MRIO sector that is used to determine the shares for 

distributing energy-related emissions into MRIO sectors.  

In the mapping of energy-related emissions, intermediary clusters for energy-related emissions are defined as 

follow: 

Table 79. Aggregated energy-related sectors, their description and coverage in terms of GAINS sectors as 

well as MRIO clusters. 

Label Description GAINS sector coverage MRIO clusters 

ELE_COAL Coal-fired power 

plants 

All power plants combusting 

coal or solid biomass2 

coal_electricity 

ELE_OIL Oil-fired power 

plants 

All power plants combusting 

heavy fuel oil or diesel 

oil_electricity 

ELE_GAS Gas-fired power 

plants 

All power plants combusting 

natural gas 

gas_electricity 

AGR_MACH Agricultural 

machinery 

TRA_OT_AGR, DOM_OTH cultivation + 

livestock_farming + 

items_dom_oth 

IND_IS Iron and steel 

industry 

IN_OC_ISTE manuf_is 

IND_NFME Non-ferrous metals IN_OC_NFME manuf_nfme 

IND_NMMI Non-metallic 

minerals 

IN_OC_NMMI3 manuf_bricks + 

manuf_cem + 

manuf_nmmi 

IND_CHEM Chemical industries IN_BO_CHEM, IN_OC_CHEM manuf_chem + manuf_fert 

+ manuf_chem_nec 

IND_CON Conversion 

industries, incl. 

refineries 

IN_BO_CON, CON_COMB ind_conversion 

 

2 It seems that no specific provision for biomass was made and thus it is included here.  
3 In GAINS energy-related emissions in NMMI (largely cement production) are all absorbed into process-

related emissions, see below. 
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PPAPER Pulp and paper IN_BO_PAP, IN_OC_PAP manuf_paper 

OTH_IND Other industries All IN_XX_OTH sectors other_industries 

SERVICES Services  DOM_COM subsectors, MSW items_services 

RAIL Trains  TRA_OT_RAI rail 

Ships Sea-going ships TRA_OTS_X ships 

INW Ships on inland 

waterways 

TRA_OT_INW inw 

CONSTRUCTION Construction 

machinery 

TRA_OT_CNS, TRA_OT_LD2, 

TRA_OTH_LB 

construction 

 

The following approach is used for the mapping. Emissions from GAINS sectors (third column Table 79) are 

aggregated to an intermediary sector (first column) and then distributed among the MRIO sectors belonging to 

the clusters in the final column using their relative shares in the energy consumption. This is illustrated further for 

agricultural machinery and combustion devices in Figure 125. 

 

Figure 125 Approach for distributing emissions from agricultural machinery and devices (mobile and 

stationary) to MRIO sectors.  

 

The energy related emissions in region r for MRIO sector m are thus: 

 Em𝑟(𝑚, 𝑒) = ∑ Em𝑟(label, e)

𝑙𝑎𝑏𝑒𝑙

⋅ sh𝑟(𝑚, e, label) 

 

(5) 

Where the sum is running over all labels given in Table 79 and the share 

 
sh𝑟(𝑚, label, e) =

FE𝑟
∗(𝑚, 𝑙𝑎𝑏𝑒𝑙)

∑ FE𝑟
∗(𝑚′, 𝑙𝑎𝑏𝑒𝑙)𝑚′

 
 

(6) 

is the share of MRIO sector m in the final energy demand (minus trucking) in the total final energy demand (minus 

trucking) in cluster label in region r. 

Process-related emissions are calculated in GAINS separately from energy-related emissions, i.e. there are 

separate source categories for these in GAINS. Again, intermediary aggregation sectors, this time relevant for the 

processes, are defined as follows:   
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Table 80 Aggregated process-related sectors, their description and coverage in terms of GAINS sectors as 

well as MRIO clusters. 

Label Description GAINS sector coverage MRIO clusters 

AGR_PROC Process emissions 

related to 

cultivation 

FCON_X, AGR_ARABLE, 

WASTE_AGR, APPLIC_X, 

GRAZE_X, STH_NPK, 

STH_AGR  

cultivation 

PROC_CATTLE Emissions related to 

cattle farming 

AGR_COWS, AGR_BEEF Cattle farming (single 

sector) 

PROC_PIG Emissions related to 

pig farming 

AGR_PIGS Pigs farming (single 

sector) 

PROC_POULT Emissions related to 

poultry farming 

AGR_POULT Poultry farming (single 

sector) 

PROC_OTANI Emissions related to 

farming of other 

animals 

AGR_OTANI Meat animals nec 

(single sector) 

PROC_BRICK Emissions related to 

brick production 

PR_BRICK manuf_bricks 

PROC_CEM Emissions related to 

cement production 

PR_CEM, PR_LIME manuf_cem 

PROC_NMMI Emissions related to 

other non-metallic 

minerals 

PR_NMMI, PR_GLASS  manuf_nmmi 

PROC_IS Emissions related to 

iron and steel 

production 

PR_EARC, PR_BAOX, 

PR_HEARTH, PR_CAST, 

PR_SINT, PR_SINT_F, 

PR_PIGI, PR_PIGI_F, 

PR_CAST_F 

manuf_is 

PROC_ALU Emissions related to 

aluminium 

production 

PR_ALPRIM, PR_ALSEC manuf_alu 

PROC_FERT Emissions related to 

fertilizer production 

PR_FERT, FERTPRO manuf_fert 

PROC_CHEM Emissions related to 

other chemical 

processes 

PR_SUAC, PR_CBLACK manuf_chem 

PROC_PULP Emissions related to 

paper and pulp 

production 

PR_PULP manuf_paper 

PROC_CONVERSION Emissions related to 

energy conversion 

PR_REF, PR_COKE, 

STH_COAL, PR_PELL 

ind_conversion 

PROC_COAL_MINE Emissions related to 

coal mining 

MINE_HC, MINE_BC, 

PR_BRIQ 

mining_coal_io 
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PROC_OTHER_MINE Emissions related to 

other mining 

STH_FEORE, MINE_OTH, 

STH_OTH_IN 

mining_other_io 

PROC_SM_IND Emissions related to 

other small 

industries 

PR_SMIND_F, OTHER_VOC, 

PR_OT_NFME, PR_OTHER, 

OTHER_PM 

other_industries 

PROC_CONSTRUCT Emissions related to 

construction 

activities 

CONSTRUCT construction 

 

The process related emissions in region r for MRIO sector m are thus: 

 Em𝑟(𝑚, 𝑝) = ∑ Em𝑟(label, p)

𝑙𝑎𝑏𝑒𝑙

⋅ sh𝑟(𝑚, e, label) 

 

(7) 

Where the sum is running over all labels given in Table 80 and the share 

 
sh𝑟(𝑚, label, e) =

FE𝑟
∗(𝑚, 𝑙𝑎𝑏𝑒𝑙)

∑ FE𝑟
∗(𝑚′, 𝑙𝑎𝑏𝑒𝑙)𝑚′

 
 

(8) 

is the share of MRIO sector m in the final energy demand (minus trucking) in the total final energy demand (minus 

trucking) in cluster label in region r. The main difference to the energy related emissions is that the clusters are 

different, and thus the shares for each sector within a cluster may be different. 

As noted above it is a simplification to distribute the process emissions proportional to the energy use in the MRIO 

sector within its corresponding cluster, and refinements could be made on the basis of information which of the 

MRIO sectors within a cluster are mostly related to the process emissions and in which proportion. 

The total emissions associated with MRIO sector m is then simply the sum of the above energy-related, process-

related, and trucking-related emissions of PM2.5: 

 Em𝑟(𝑚) = Em𝑟(𝑚, 𝑒) + Em𝑟(𝑚, 𝑝)  + Em𝑟(𝑚, 𝑡)  (9) 

 

Data  

EXIOBASE is used for the global MRIO table and CO2 emission inventory for the year 2021.315 In EXIOBASE, 

44 territories and 5 rest of the world regions are covered in the resolution of 163 industrial sectors. The associated 

CO2 emission inventory is mapped on a one-to-one sectorial resolution. Hence, consumption-based CO2 can be 

easily obtained using equation (1). 

To present the results in HDI country groups, the 44 territories are aggregated in accordance with HDI 

classification developed by UNDP. In the case of the 5 rest of the world regions, disaggregation of both 

consumption-based and production-based CO2 inventories has been conducted in proportion to the national total 

2021 production-based CO2 emissions provided by the Global Carbon Project 2022.316 Since the 2021 MRIO table 

and CO2 emission inventory in EXIOBASE is an extrapolation from historical data, adjustments are made 

accordingly to both the world MRIO table and CO2 emission inventory in EXIOBASE. Specifically, change ratio 

of countries’ GDPs317 from 2020 to 2021 are used to adjust for the domestic intermediate and final consumptions 

for all countries in the global MRIO table. Change ratio of countries’ exports318  from 2020 to 2021 are used to 

adjust for the intermediate and final exported consumptions for all countries in the global MRIO table. 2021 global 

CO2 emission data from the Global Carbon Project 2022316 is used to adjust the total CO2 emissions of countries. 

Similarly, upon the derivation of production-based PM2.5 emission inventory using GAINS model, consumption-

based PM2.5 emission inventory can be easily obtained using equation (1). As for the 5 rest of the world regions, 

production-based emissions are disaggregated in proportion to 2015 PM2.5 emission inventory of EDGAR 

database.319 Consumption-based emission ratio of the 5 rest of the world regions is estimated based on CO2 

emission inventories. Having consumption-based and production-based inventories for both CO2 and PM2.5 

emissions ready, countries are grouped according to HDI levels for results analysis (Figure 126). 
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World Bank population data is used to calculate the per capita CO2 and PM2.5 emissions of different HDI 

development groups, in accordance with previous calculations. By simply dividing emissions with populations, 

Figure 127 is produced to show the difference in per capita emissions.  

 

Figure 126: The flows of CO2 and PM2.5 emissions among countries grouped according to Human 

Development Index (HDI), 2021. 
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Figure 127 Per capita CO2 and PM2.5 emissions of different HDI country groups. 

 

Caveats  

The GAINS model separating PM2.5 emissions into three groupings appears necessary for the following reasons. 

First, a simplification here is done just on the basis of the total fuel use, rather than on the basis of fuel specific 

data, though this could be further refined in the next version of this mapping tool. Second, process-related 

emissions are typically related to specific sectors and thus distributing the emissions among the same cluster as 

the energy-related emissions seems to introduce a smearing out that is not justified. Thus, process emissions from 

GAINS are distributed not across all MRIO sectors, but only across those that can be clearly identified with a 

particular process, and those for which a process emission cannot be further resolved. Finally, trucking-related 

emissions are distributed among all sectors on the basis of their diesel consumption. It is assumed that the relative 

share of diesel consumption for road transport in each MRIO sector is generally a good proxy for the relative 

share in the trucking-related emissions.  

In the stage of emission inventory disaggregation, simplifications and assumptions may bring uncertainties into 

the results. When disaggregating the five rest of the world regions, unavailable data are either filled by emissions 

from previous years or estimated based on the structure of embodied emissions of other pollutants. The analysis 

can be updated when more accurate emission inventory becomes available in the future.  

Additional analysis 

One of the main contributions of this work is a mapping between GAINS sectors and MRIO tables via the 

EXIOBASE energy extension. This is a powerful tool that maps production-based accounts of primary PM2.5 to 

MRIO tables and therefore easily to consumption-based accounting schemata. So far, the analysis has focused on 

historical data, but the GAINS framework offers also prominently future perspectives in the form of scenarios. 

Thus, in conjunction with methods to project MRIO tables, the present methodology could be used to combine 

future emissions scenarios with future MRIO tables to assess future consumption patterns. 

A number of simplifications have been made that could be refined in the next version of the mapping tool to 

increase the accuracy of the mapping. The mapping in this exercise is a viable tool to relate process-based 

calculations to consumption-based accounting frameworks. However, it is understood that the linking of 

frameworks that were built with different purposes (MRIO as an inventory relating economic inputs to economic 

outputs; GAINS as an integrated tool for air quality policy decision support based on forward looking scenarios) 

may result in conceptual anomalies. Furthermore, while numerical results are provided at high sectoral and 

regional resolution, it is important to keep in mind that at this level the results are more uncertain than at an 

aggregated level. Further to the mapping process, assumptions and estimations made due to unavailable data 

points in the inventories will exacerbate uncertainties. In the future, the present methodology will be refined to 
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reflect additional insights that will arise through the application of the method to different circumstances or 

updated inventories. 

 

Indicator 4.2.6: Compatibility of Fossil Fuel Company Strategies with the Paris Agreement  

Indicator authors 

Dr Daniel Scamman 

Methods  

Absolute emission targets 

Carbon dioxide (CO2) is responsible for around three-quarters of total greenhouse gas emissions as measured in 

gigatonnes of CO2-equivalent.320 Climate change has multiple direct impacts on human health, as identified 

throughout the Lancet Countdown. Hence reducing CO2 emissions from fossil fuels in order to reduce climate 

change will bring about significantly improved health outcomes. 

This indicator connects CO2 emissions to the activities of major oil and gas (O&G) companies that extract these 

fossil fuels, and analyses the extent to which their future production plans are consistent with the need to reduce 

CO2 emissions in order to avoid dangerous climate change. In particular, this indicator focuses on production 

projections based on actual corporate activities, which may not always reflect declared targets or aspirations. 

Those companies whose business strategies fall short of what is required to be compliant with climate change 

targets can be said to be posing a danger to public health. 

The indicator tracks the gap between the projected production of oil and gas companies based on their actual 

activities, and production trajectories consistent with the Paris target of 1.5°C of warming.  The indicator is 

expressed as a percentage of the projected production that each company is above or below a pathway consistent 

with the Paris targets.  If the indicator value is positive, the company projection is above the climate-consistent 

plan, and therefore not consistent with the climate target. The indicator analyses both international, publicly traded 

oil companies (IOCs) and national oil companies (NOCs), which in many cases have larger production volumes 

than IOCs but are subject to less public or shareholder scrutiny.   

A number of organisations analyse the activities of oil and gas companies relative to climate targets, many of them 

aimed at investors.  The Transition Pathways Initiative (TPI) publishes an annual assessment of around sixty large 

publicly owned O&G companies.  However their data is based on companies’ own disclosures and reports, so 

may be more aspirational rather than based on actual production projections, and excludes some of the large state-

owned NOCs.321  The Science-Based Targets Initiative (SBTi) helps businesses set science-based emissions 

reduction targets, but these are based on companies’ own submissions rather than objective assessments of actual 

activity.322 The annual Production Gap Report (PGR) tracks the discrepancy between fossil fuel production and 

climate-consistent production levels, but focuses on 15 countries rather than O&G companies, and relies on 

government production projections from national energy outlooks and targets.323 Climate Action 100+ produce 

an annual Net Zero Company Benchmark;324 their indicators primarily focuses on ambition, governance and 

disclosure, but a capital allocation alignment indicator generated by Carbon Tracker Initiative (CTI) evaluates the 

alignment of company actions with the Paris Agreement. CTI also publish an annual Two Degrees of Separation 

report determining potential transition risk exposure for upstream oil and gas companies, finding that the asset 

stranding risk of unsanctioned (pre-FID) assets is severe.325  In 2020 Oil Change International (OCI) published 

production projections for eight IOCs, but this was a one-off report restricted to a small number of companies.326 

A recent journal paper found a discrepancy between the discourse and actions of four oil majors, but focussed on 

historic actions only.327  

It is best practice in assessing corporate strategies to consider both absolute and intensity emission targets.328–330 

This prevents a situation where a company scores favourably by reducing its absolute emissions, but merely 

because its production is decreasing while its emission intensity (kgCO2/MJ) could actually be increasing.  Or 

where a company improves its emission intensity but releases more emissions overall because its production is 

growing.  However, an emissions intensity target is not considered here due to the challenges in projecting 

improvements in operational efficiency (e.g., reduced flaring or leakage) or transitions to lower-carbon fuels such 
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as renewables or nuclear.  Instead this indicator uses absolute reduction targets, which are the most meaningful 

for reducing global total atmospheric emissions.328 

Emission Benchmarks 

An internationally-recognised standard for reporting emissions used by many companies is the GHG Protocol 

Corporate Standard, developed in 2004 by the World Resources Institute (WRI) and World Business Council for 

Sustainable Development (WBCSD).331,332 This divides emissions into Scope 1 (direct emissions), Scope 2 

(indirect energy emissions) and Scope 3 (other indirect emissions).  Scope 3 emissions (and Use of Sold Products 

in particular) can be much higher than Scope 1 and 2 emissions (e.g. 86% of total emissions of European 

companies recently reported to the Carbon Disclosure Project, CDP), particularly for energy companies.333,334 

Corporate benchmarks for companies operating in different sectors can be established using the Sectoral 

Decarbonisation Approach (SDA), developed in 2015 by the CDP, WRI, and WWF329 and used by organisations 

including TPI and SBTi.328,335 However the SDA is primarily designed for Scope 1 and 2 emissions, and most 

companies focus their efforts on scopes 1 and 2 emissions over which they have more direct control.330 Also, the 

SDA is intended primarily to help companies in homogenous energy intensive sectors (sectors that can be 

described with a single physical indicator) rather than the oil and gas sector,328 with SBTi regarding science-based 

emission reductions for fossil fuel companies as complex.336  TPI have generated a sectoral decarbonisation 

pathway for the O&G sector, but this is an emissions intensity pathway which is not being considered for this 

indicator.335 

Paris-compliant least-cost pathways typically generate projections for future global oil and gas production. This 

oil and gas has to be produced by O&G companies, so this production data can be used to represent the pathway 

O&G companies must take to be Paris-compliant.  In addition, this production data (as opposed to consumption) 

can be assumed to cover Scope 1, 2 and 3 emissions.  Hence this indicator uses oil and gas production data 

emanating from Paris-compliant modelling to generate Paris-compliant benchmarks for the O&G industry, rather 

than an SDA approach that generates separate Scope 1, 2 and 3 emission targets. 

O&G sector benchmarks are typically derived using climate-compliant pathways from either the IEA or the IPCC.  

SBTi selected 20 1.5°C scenarios from an ensemble of over 400 peer-reviewed IPCC pathways for their 

analysis.337–339 Likewise the Production Gap Report is based on a grouping of 19 IPCC 1.5°C scenarios.323 

Alternatively TPI, Carbon Tracker and OCI used IEA pathways;325,326,335 some considered both.  IEA scenarios 

provide a greater amount of sectoral granularity,338 and this indicator (in alignment with TPI)  uses the IEA’s Net 

Zero Emissions by 2050 (NZE) scenario for its 1.5°C scenario from the IEA’s World Energy Outlook (WEO) 

report. For the 2022 Lancet Countdown report, the NZE scenario in the 2021 WEO report was used.340  However 

the NZE was updated for the 2022 WEO report, and this updated NZE scenario is used here for the 2023 Lancet 

Countdown report.341 The updated NZE reaches net zero emissions in 2050 and is consistent with limiting the 

global temperature rise to 1.5°C without a temperature overshoot; 1.5°C refers to the median temperature rise, 

meaning there is a 50% probability of remaining below 1.5°C.  Table 81 shows a comparison between fossil fuel 

supply in the 2021 and 2022 versions of the NZE; it shows an increase in the supply of coal and oil in 2030 which 

is partly offset by a reduction in natural gas but still with a slight rise in overall fossil fuel supply.  Coal and oil 

supply then reduce in the 2030s to reach similar levels to the 2021 NZE in 2040 and 2050, while natural gas 

continues to decrease to substantially lower levels such that overall fossil fuel supply is lower in 2040 and 2050.  

Overall fossil fuel supply is still substantially greater than zero in 2050, indicating a significant reliance on 

offsetting technologies in other sectors. 

    2021 NZE scenario 2022 NZE scenario 

    2020 2030 2040 2050 2020 2030 2040 2050 

Coal EJ 154 71.9 31.7 17.2 157 89 27 16 

Oil EJ 173 137 79.2 42.2 172 143 76 40 

Natural gas EJ 137 129 74.6 60.7 140 113 54 40 

Total EJ 464 338 186 120 469 345 157 96 

Table 81: Comparison of fossil fuel supply in 2021 and 2022 IEA NZE scenarios 

Emission Projections 
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A company’s future oil and gas production (and hence emissions) can be estimated from changes in its reserves 

and investments as recorded in their company reports.  However this is a challenging and complex process, for 

example with different definitions of reserves in different regions, reserves being bought and sold according to 

market conditions, and an observed recent sector-wide reduction in reserve holdings.342  Hence a number of 

analyses base their future production projections on data from Rystad Energy,324–326 an independent oil and gas 

consultancy that maintains a database of every oil and gas project in the world.343  Historical and projected 

production data were downloaded for this indicator from the Rystad Energy UCube database on 24th February 

2023 i.e. one calendar year after the data reported in the 2022 Lancet Countdown report. 

Each company needs its own benchmark pathway against which its projected production is assessed.  This is 

generated by assigning each company its own market share, based on its average market share over the historical 

period 2015-2020, relative to actual oil and gas production data from IEA’s World Energy Balances report.344  

The company is then allocated this fraction of the future oil and gas production trajectory contained in the NZE 

scenario.  Typically this market share is assumed to be constant over time,329,335 though uncertainties over 

changing market shares may limit targets to, for example, 15 years ahead.329  Fixing market shares to current 

levels allows the future performance of a firm to be compared; if a firm’s market share increases, this indicates its 

non-compliance has increased relative to its peers, whereas compliance improves if its share falls. Rystad data 

indicated that some firms changed market share slightly over the period 2015-20, but many remained at similar 

levels. Rystad projections for the future indicated that projected productions for many firms relative to each other 

remained relatively stable, suggesting that many firms can be expected to rebound from short-term volatility in 

production. 

The effect of uncertainties over future market shares for individual firms can be reduced by assessing firms in 

groups.  Here, companies are grouped into publicly listed International Oil Companies (IOCs), including the 

widely-known Oil Majors, and state-owned National Oil Companies (NOCs) that in many cases have higher 

production levels but lower scrutiny than IOCs. The twenty largest O&G firms by projected 2040 production were 

included in the indicator this year; these included eleven NOCs and nine IOCs, responsible for 37% and 15.5% of 

total global production respectively in 2022 (52.5% overall). 

Data  

1. 1.5°C NZE pathway from IEA World Energy Outlook 2022.341  

2. Oil and Gas firm production projection data from Rystad Energy343 

3. Historical oil and gas production data from IEA World Energy Balances 2022.344  

Caveats  

There are several caveats to consider with this indicator. 

The IEA NZE benchmark used in this analysis only have 50% probability of maintaining temperatures below the 

1.5°C target.  Although typical for this sort of analysis, it needs to be remembered that, even if O&G firms follow 

the Paris-compliant pathways outlined here, there is still a substantial chance that temperature targets will be 

exceeded. 

This indicator uses projections of future production of O&G firms from the Rystad Energy database.  Although a 

leading database in the sector, there is a significant possibility that O&G firms will follow different projection 

pathways to the ones projected by Rystad. These uncertainties are likely to increase over time, meaning projections 

in the long-term are less certain than in the shorter-term. 

O&G firms are assumed here to have constant market shares.  This assumption is typical for this sort of analysis 

but can be expected to introduce errors for at least some firms that increase over time, especially smaller firms.  

This can be at least partly addressed by aggregating firms into groupings such as IOCs and NOCs. 

Future form of the indicator 

In upcoming years, this indicator will monitor the extent to which oil and gas company strategies are compliant 

with the goals of the Paris Agreements, as production strategies change. 
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Indicator 4.2.7: Fossil Fuel and Green Bank Lending  

Indicator authors 

Dr Nadia Ameli, Dr Francesca Larosa, Dr Jamie Rickman 

Methods  

Data for bank lending to the fossil fuel and green sectors was taken from a proprietary Bloomberg dataset covering 

the global debt market. Fossil fuel lending is defined as being directed towards exploration, production, operation 

and marketing activities in oil and gas. Green lending is self-identified by the issuer as funding a project or activity 

with an environmental or sustainability-oriented goal i.e., renewables and energy efficiency, green building and 

infrastructure, agriculture, and forestry (reforestations, land-use), other sustainability (clean water, waste 

management). 

Data is provided as total loans and bonds issued per year in USD by 787 banks from 2010 to 2021. 14% of green 

lending and 60% of fossil fuel lending is provided as loans, which can be issued at corporate level or as project 

finance. The remaining finance is provided as bonds. 

The data was augmented by identifying the location of each bank’s head office and ownership status (public or 

private) through Google search and verified through the Bloomberg terminal where necessary. Public banks, 

defined as banks that are majority owned by one or multiple government entities, were excluded from the dataset 

(over the reported period public banks provided 6% and 9% of finance to the fossil fuel and green sectors 

respectively). Private banks are defined as those with over 50% non-governmental ownership; they may or may 

not be publicly-listed companies. The location of six banks could not be identified due to ambiguity in their names, 

but these banks represent a negligible portion of data (<0.01% of finance in both the fossil fuel and green sectors) 

and they were excluded from the regional analysis. 67 countries are represented in the data (48; very high HDI 

level, 13; high HDI level, 4; medium HDI level, 2; low HDI level). Regional analysis shows that the fossil fuel 

lending data is dominated by North American banks, while European banks are the biggest group in the green 

sector (Figure 128). This highlights that international finance flows of fossil fuel and green debt lead to investment 

decisions being taken in regions different to where the impact of the investment will be felt. 

The data was further augmented by identifying which banks were signatories of the Net Zero Banking Alliance 

(NZBA). If a bank in our dataset is a subsidiary of a bank signed to the NZBA it is also considered a signatory 

e.g., the Royal Bank of Canada is a signatory of the NZBA and its subsidiary RBC Capital Markets was therefore 

also considered a signatory. Of the 126 NZBA signatories (as of February 2023), 77 banks are represented in the 

data. NZBA signatories that are not present in the data may be too small (in terms of lending activity and/or loan 

volumes) to be covered by Bloomberg analytics or not active in the fossil fuel or green sectors.  

Bank-level financing 

Lending per bank per year per sector was calculated as the total of their bond and loan issuance. The contribution 

of banks to overall lending is highly skewed with the top 40 banks providing 83% of fossil fuel lending in the last 

five years of data (Figure 129). 

Tracking bank-level lending activity 

The metric to track the change in bank-level lending activity to the fossil fuel sector was calculated as the 

percentage change in their average annual lending between a pre-Paris (2010-2016) and post-Paris (2017-2021) 

period. The post-Paris period begins two years after the signing of the Paris Agreement, reflecting the time taken 

for a change in activities to be enacted.   

Data  

1. Bloomberg (fossil fuel and green fixed income data as of Jan 2022). 

2. NZBA signatories as of February 2023.345  

 

Caveats  
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The main caveat of the data is that it represents only a subset of investments provided by the financial sector, 

namely debt provided by banks. Equity investments are not covered by the data, nor are contributions from other 

financial actors such as institutional investors.  

In addition, the labelling of a debt as ‘green’ is reliant on the classification by the issuer, which makes it susceptible 

to green-washing. There is no independent verification of this classification.  

 

Additional analysis 

 

Figure 128: Lending activity of the private banking sector to the fossil fuel and green sectors between 2010 

and 2021. The yearly data is disaggregated by LC regions, where the region refers to the location of the 

banks’ headquarters.  

 

Figure 129: Contribution of the top 100 banks to fossil fuel lending in the post-Paris period (2017-2021). 

Blue charts show the overall finance provided. Red line shows the cumulative share of these banks to total 

fossil fuel lending. The top 100 banks have provided 83% of total lending in the last five years. 
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Figure 130: Lending activity of the top 40 banks in the fossil fuel sector. Bars show the percentage change 

in average annual investment from a pre-Paris (2010-2016) to a post-Paris Agreement (2017-2021) period. 

Banks that are signatories to the Net Zero Banking Alliance are show in blue. Red lines indicate the share 

of total lending provided by each bank in the post-Paris period.  

 

 

 

Section 5: Public and Political Engagement 

Lead Author: Prof Hilary Graham 

Research Fellow: Dr Pete Lampard 

Indicator 5.1: Media Engagement in Health and Climate Change 

Global coverage of health and climate change 

Indicator authors 
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Dr Lucy McAllister, Prof Wenjia Cai, Dr Pete Lampard, Olivia Pearman 

Methods  

Intersecting trends in coverage of climate change and health were identified in 66 newspaper sources 

from January 2007 through December 2022. The 65 sources are located across 35 countries, in four 

languages, and spanning the six World Health Organization (WHO) regions: African Region, Region 

of the Americas, South-East Asia Region, European Region, Eastern Mediterranean Region, and 

Western Pacific Region. These sources were monitored through Nexis Uni, Proquest, and Factiva 

databases accessed via the University of Colorado and University of York libraries.  

The 2023 report of the Lancet Countdown adopts the search strategy developed for the 2020 and 2021 

Lancet Countdown reports within these three databases. The search strategy was revised for the 2020 

report to increase the precision of the indicator; that is, to reduce the number of ‘false positives’, while 

retaining the maximum number of ‘true positives’. This was done by retaining those terms that a) 

produced relevant data, and b) had a low degree of polysemy (i.e. words that have fewer meanings or 

words used in fewer disciplines/domains). Testing for interaction between terms also enabled fewer 

terms to be used (for example, it was found that the term ‘morbidity’ would usually pull in the term 

‘mortality’, when related to humans). 

The terms were translated once the strategy had been finalised with certain terms presenting difficulties 

in translation. The English terms ‘hay-fever’ and ‘West Nile’, for example, correlated with more than 

one term in Spanish and Portuguese and the decision was made to include all relevant terms in the 

respective search strategies. 

For the final strategy, search functions were compared across databases to ensure consistency, as 

different databases utilise different search filter operators. The searches were conducted with the 

following key words in English, Spanish, Portuguese and German respectively: 

English: (climate change OR global warming) AND (health OR illness OR 

epidemiolog* OR malnutrition OR morbidity OR fatalit* OR diarrh* OR malaria OR 

chikungunya OR west nile OR dengue OR hay-fever OR zika) 

German: (Klimawandel OR Globale Erwärmung) AND (Gesundheit OR Krankheit OR 

Epidemiolog* OR Mangelernährung OR Morbidität OR Sterblich* OR Durchfall* OR 

Malaria OR Chikungunya OR West-Nil-Virus OR Dengue-Fieber OR Heuschnupfen OR 

Zika)  

Portuguese: (mudanças climáticas OR aquecimento global) AND (saúde OR doença OR 

epidemiologi* OR desnutrição OR morbilidade OR fatalidade* OR diarr* OR malária 

OR chikungunya OR nilo do oeste OR vírus do nilo OR dengue OR febre dos fenos OR 

rinite alérgica OR zika) 

Spanish: (cambio climático OR calentamiento global) AND (salud OR enfermedad* OR 

epidemiología OR epidemiólog* OR desnutrición OR malnutrición OR morbosidad OR 

muert* OR diarrea* OR malaria OR paludismo OR chikungunya OR nilo del oeste OR 

nilo occidental OR virus del nilo OR dengue OR fiebre del heno OR rinitis alérgica OR 

zika) 

The signal of the search strategies above was found to be strong enough (over 80% relevance in a 

systematically randomised sample of 500) to allow a more parsimonious approach to this indicator, 

requiring no screening of articles during the extraction of the data. 

A separate search was undertaken with the inclusion of co-benefit terms (“cobenefit* OR “co-

benefit*), in order to locate articles where health keywords, climate change keywords, and co-benefits 

keywords were included. This was undertaken in all English language sources, from 2007 to 2022.  



208 

 

Results were obtained from the databases by entering the relevant search strategy along with the 

relevant date. Counting occurred month by month and the number of returns for each source was 

recorded on a Microsoft Excel spreadsheet. Primary counting took place for each source along with a 

secondary independent count of a systematically randomised 20% sample by another researcher. 

Tertiary counts were undertaken where any mismatch occurred between primary and secondary 

counts. All counts were agreed by the whole research team.  

Using the Excel spreadsheet constructed through the phases of counting, the data was organised in 

numerous ways for a better understanding of the patterns in coverage. These included by WHO 

region, by the most recent (2020) Human Development Index categories, by individual source, and 

now by new Lancet Countdown groupings. The average scores for each month (and aggregated into 

annual averages) were used as an adjustment for the number of sources selected per region or index 

category. 

Data  

1. Three databases were used for the core health and climate change search strategy: Nexis Uni; 

Proquest; and Factiva databases accessed via the University of Colorado libraries. The 65 

newspaper sources are located across 35 countries, in four languages, and spanning the six 

World Health Organization (WHO) regions. 

2. Two databases were used for the health, climate change, and co-benefit search strategies: 

Nexis Uni; and Factiva databases accessed via the University of Colorado libraries. The 51 

newspaper sources are located across 24 countries and span the six World Health 

Organization (WHO) regions. 

Caveats  

In developing the search strategy for the 2020 and 2021 Lancet Countdown reports it was found that a 

significant portion of articles may mention both climate change and health but do not engage with 

them as integrated issues. Including this coverage remains important as it brings both sets of issues – 

health and climate change – onto the public agenda and into public awareness. 

Future form of the indicator  

The 2024 report will look to diversify its sources to integrate more from countries in the low and 

medium HDI groups. 

Additional analysis 

Percentage change in climate change and health and climate change coverage 

Figure 131 shows the percentage change each year of articles with climate change keywords and 

articles with both climate change and health keywords. While the percentage change from 2020 to 

2021 was positive for both climate change (54%) and health and climate change articles (27%), only 

health and climate change show a positive percentage change from 2021 to 2022 (12%). This increase 

must be seen within the context of decreasing numbers of climate change articles more generally (-

15%), demonstrating an increasing proportion of climate change articles also mentioning health. 
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Figure 131. Annual percentage change in coverage of climate change and health and climate change from 

2007 to 2022. 

Total media engagement across all sources in 2022 

The linear trendlines in Figure 132 demonstrate an increase throughout 2022 in both articles with 

health and articles with health and climate change, though the increase is sharper in articles 

mentioning climate change. Due to this, the proportion of articles mentioning climate change and also 

mentioning health decreases throughout the year. 

 

Figure 132. Total media engagement in climate change and health and climate change across all sources in 

2022 

Geographical distribution of newspaper coverage 

Figure 133 shows the geographical distribution of articles with a co-occurrence of health and climate 

change keywords, by Lancet Countdown grouping. While North American sources (n=7 in 2022) had 
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the highest average coverage from 2013 to 2019, the SIDS region (n=1) now has a higher average 

number of sources and the next iteration of the Lancet Countdown will look to build the number of 

SIDS sources in the indicator.  

Decreases in average coverage can be seen from 2021 to 2022 across four of the Lancet Countdown 

groupings (SIDS by -17%, Northern America by -21%, Europe by -6% – the three carrying the 

majority of health and climate change co-coverage – and Africa by -7%). With 2022 marking the end 

of longer trends over time for these regions with SIDS and Europe having seen increases since 2017 

and North America since 2018. 2022 also saw the end of a less steep positive trend in African sources 

(since 2018).  

Increases in average coverage can be seen in the remaining three Lancet Countdown regional 

groupings; Oceania region (by 13%), the Asian region (by 8%), and the South and Central American 

region (by 48%). Positive trends have continued in Asia since 2017 and South and Central America 

since 2018. 

 

Figure 133. Average annual media engagement by Lancet Countdown grouping from 2007 to 2022. 

Distribution of newspaper coverage by Human Development Index 

Figure 134 shows the distribution of articles with a co-occurrence of health and climate change 

keywords, by Human Development Index. 
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Figure 134. Average annual media engagement by HDI classification from 2007 to 2022. 
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Media coverage of health and climate change in China’s People’s Daily 

In the 2023 Lancet Countdown report, the methodology used in the Lancet Countdown 2022 report 

was retained, trawling all articles, and searching the keywords in the text with the filtration process by 

score and keywords ratio as filtration criteria. The detailed steps of the method used in 2022 are 

shown as below: 

Step 1 Trawling all the articles in 2022 

Articles published in “People’s Daily”4 in 2022 were trawled  

Step 2 Searching for “Climate Change” topic articles 

Articles were searched for that contained the keywords in the topic of “Climate Change” (presented in 

the first column of Table 82). 

 

Figure 135. Number of articles identified in People’s Daily containing Climate Change keywords 

Step 3 Identifying articles that have both climate change and health keywords (first-round search) 

In this step, a first-round of filtration was undertaken, aiming to identify articles that have both 

climate change and health keywords. The results were the basis for the second-round search in Step 4.  

Step 4 Machine filtration on the results from step 3 by score and ratio (second-round search) 

The articles obtained from step 3 were first scored based on the times of appearance of the keywords 

shown in the articles. For example, if the keywords of climate change and health appeared 12 times in 

one article, then the score for this article was 12. If the keyword found is one of the “mis-hit words” 

(phrase that containing a keyword but with different meaning), the appearance will not be counted as 

one score. 

At the same time, the ratio of times of appearance of the keywords to the total number of characters in 

the article (short for “the ratio” thereafter) was also calculated. When the score and the ratio of one 

article are both higher than the manually-set thresholds, the article was considered relevant for health 

and climate change. Via this step, the numbers of relevant articles are illustrated by the orange line in 

Figure 136. 

 

4 http://paper.people.com.cn/rmrb/html/2022-03/05/nbs.D110000renmrb_01.htm 
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The threshold of score for each article is set to be 10, meaning the times of appearance of the 

keywords from both climate change and health in one article should be no less than 10. The threshold 

of ratio for each article was set to be no less than 1%, meaning in every 100 characters in the article, 

there should be no less than 1 keyword.   

If the two thresholds were set too low, it would increase the workload of manual screening and 

increase the “false rate” of machine filtration. And if the two thresholds were set too high, it would 

possibly exclude the “true” articles. After several trial tests, the thresholds for score and the ratio were 

set as no less than 10 and 1% respectively.  

Step 5: Manual screening of the results after machine filtration 

The fifth step was manually screening the filtered articles. If the manual screening confirmed that the 

topic was Health and Climate Change, it was retained. The orange line in Figure 136 shows the 

number of articles that passed the manual screening.  

In Figure 136, the number of health and climate change coverage articles in 2022 had a contrast 

before and after manual screening. Before manually screening there were 92 articles, however, only 7 

articles were identified by manual screening as being truly related to the topic, which was lower than 

the average. The abnormal results indicated that there were a lot of false positive articles appearing 

during the machine filtration process in 2022. After manually checking the false positive articles, it 

was found that public health and climate change were two separate topics that were always mentioned 

in the speech of the important leaders.  

Titles of the 7 positive articles are presented in the additional information as Table 83. 

 

Figure 136. Numbers of articles for climate change only (dark blue line), for both health and climate change 

after machine filtration only (orange line), and for both health and climate change after machine filtration 

and manual screening (blue line) 
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气候变化关键词 
气候变化二级关

键词 
健康关键词 剔除词 

气候变化  霾 疟疾 口蹄疫 

全球变暖  空气污染 腹泻 黑烂病 

温室  大气污染 感染 珊瑚死亡 

极端天气   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

肺炎 沙虫死亡 

全球环境变化 流行病 高温加热 

低碳  公共卫生 低碳水 

可再生能源 卫生 健康发展 

碳排放  发病 生态健康 

二氧化碳排放 营养 河流健康 

气候污染 精神障碍 生态环境健康 

气候 发育   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

全球升温 传染 

再生能源 疾患 

CO2排放  症 

污染 瘟疫 

极端气候 流感 

高温 流行感冒 

变暖 治疗 

排放 保健 

环境变化 健康 

升温 死亡 

全球温升 精神疾病 

热浪 精神病 

暴雨 登革热 

气温 饥饿 

洪水 粮食 

洪灾 有害 

气候反常 皮肤病 
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野火 风湿   

山火 呼吸系统疾病 

雪灾 人类健康 

低温 人体健康 

年代际 身体健康 

冰雪 心脏病 

可持续发展 糖尿病 

海洋酸化 疾病 

静稳 热死 

温室气体 口罩 

寒潮 防护 

强降雪 

 

暴雪 

台风 

干旱 

水灾 

极端降雨 

冻害 

Table 82. Chinese keywords for the search in People’s Daily 
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Box 1. English translation of the Chinese keywords 

Data 

All the articles from 2008 to the present published on People’s Daily (from the official website of 

People’s Daily). 

Additional information 

Titles of the articles in 2022 

Table 83. Title of the health and climate change articles in People’s Daily 

  

文章名字 Title of the article 

国务院调查组相关负责人就河南郑州“

7·20”特大暴雨灾害调查工作答记者问 

Officials of The State Council investigation team 

answer reporters' questions on the investigation of 

the July 20 torrential rain disaster in Zhengzhou, 

Henan Province” 

美国频繁遭遇重大气象灾害 
The United States is frequently hit by weather 

disasters 

非洲之角积极应对严重旱灾   Horn of Africa is responding to a severe drought   

欧洲多国经受高温“烤”验 
Many European countries are subjected to high 

temperature "roast" 

加强高温天气下劳动者权益保障 
To ensure the protection of laborers’ rights under 

high temperature 

携手应对全球气候灾害风险 
Coping with the risk in global climate disaster 

together  

巴基斯坦全力抗击洪涝灾害 Pakistan is fighting with floods 

“Climate Change”: Climate change, Global warming, Greenhouse, Extreme weather, Global 

environment change, Low carbon, Carbon dioxide emissions, Renewable energy, Carbon 

Production, Air pollution, Climate , Global worming, Renewable energy, CO2 emissions, 

Pollution , Extreme weather, High temperature, Warming, Emission, Environmental change, 

Warming, Global warming, Heat wave, Rainstorm, Temperature, Flood, Flood, Abnormal 

weather, Wildfire, Mountain fire, Snowstorm, Low temperature, Interdecadal, Ice and snow, 

Sustainable development, Ocean acidification, Stagnant, Greenhouse gas, Cold wave, Heavy 

snowfall, Blizzard, Typhoon, Drought, Flood, Extreme rainfall, Frost damage 

Sub- level keywords of “Climate Change”: Haze, Air pollution, Atmospheric Pollution 

“Health”: Malaria, Diarrhea, Infected, Pneumonia, Epidemic, Public health, Hygiene, Disease 

outbreak, Nutrition, Mental disorders, Growth, Infection, Affection, Symptom, Epidemic, Flu, 

Influenza, Treatment, Health care, Health, Death, Mental disease, Mental illness, Dengue, 

Hunger, Food, Harmful, Skin disease, Rheumatism, Respiratory diseases, Human health, Body 

health, Heart disease, Diabetes, Illnesses, Heat death, Mask, Protection, Survive 

Removal words: Aftosa, Black shank, Coral death, Sandworm death, Heating to higher 

temperature, Low carbohydrate, Healthy development, Ecological health, River health, Eco-

environmental health 
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Indicator 5.2: Individual Engagement in Health and Climate Change 

Indicator authors 

Prof Simon Munzert 

Method 

This indicator provides an individual-level indicator of public engagement.  It tracks engagement with 

climate change and health through people’s usage of the online encyclopedia Wikipedia. Over the 

years, Wikipedia has grown to be a major and trusted source of information that has outpaced 

traditional encyclopaedias in terms of reach, coverage, and comprehensiveness.346 It is regularly listed 

among the ten most-visited websites worldwide.347 The English edition covers more than 6.6 million 

articles and over 40,000 active editors. People around the world use it to engage in topics they are 

interested in. Fortunately, the traffic that goes to Wikipedia – and even that which goes to individual 

articles of the encyclopedia – can be analysed over time because the Wikimedia foundation makes 

these statistics available to everyone for free. This makes it a global indicator of what people pay 

attention to on a daily basis. What is more – and of particular relevance in the context of this report – 

the platform’s health content makes it one of the most frequently used resources for information on 

health on the internet.348 

The indicator  

To investigate to what extent people do not only pay attention to climate change and human health in 

isolation, but also to the connection between both, this indicator draws on clickstream statistics from 

the English Wikipedia. 

Clickstream refers to a dataset provided by the Wikimedia foundation.349 It reports “streams of 

clicks”, or in other words: how people get to a Wikipedia article and what links they click on. This is 

reported on a monthly basis and in pairs of resources; the first being where the visit came from, the 

second which page was visited. This gives an indicator of monthly-level global attention towards one 

issue (if both articles are representative of the same issue) or two issues (if articles come from 

different domains, such as climate change and health). By looking at climate change–health article 

pairs, an indicator of attention towards climate change consequences for human health over time can 

be generated. 

Measurement strategy 

Our approach to using clickstream data as an indicator of public engagement in climate change and 

health is based on the following premises:  

1. The Wikipedia platform is a globally used source for information on a multitude of topics. 

(See 

https://stats.wikimedia.org/wikimedia/squids/SquidReportPageViewsPerCountryOverview.ht

m   for an overview of Wikipedia usage by country and languages) 

2. Citizens use the platform to inform themselves about topics they are interested in 

3. By tracking engagement with Wikipedia articles that are related to climate change as well as 

with articles on health, it is possible to identify public engagement with the relationship 

between both topics 

The following behavioural patterns are relevant for the validity of the measure as a proxy for public 

engagement with climate change and health: 

a. A person is generally interested in the nexus between climate change and public health and 

informs her/himself about the topic online by, e.g., reading the Wikipedia article on Effects of 

https://stats.wikimedia.org/wikimedia/squids/SquidReportPageViewsPerCountryOverview.htm
https://stats.wikimedia.org/wikimedia/squids/SquidReportPageViewsPerCountryOverview.htm
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climate change on human health 

(https://en.wikipedia.org/wiki/Effects_of_climate_change_on_human_health) 

b. A person is interested in climate change and the consumption of information about the topic, 

this then sparks interest in its consequences for human health. For instance, the person reads 

the article on Climate change (https://en.wikipedia.org/wiki/Climate_change) and then turns 

to the article on Malnutrition (https://en.wikipedia.org/wiki/Malnutrition) 

c. A person is interested in a certain aspect of human health or consequences of climate change 

with an immediate impact on human health, and then turns attention to climate change issues. 

For instance, the person reads the article on Malaria (https://en.wikipedia.org/wiki/Malaria) 

and then turns to the article on climate change 

(https://en.wikipedia.org/wiki/Climate_change). 

Indicator construction 

In order to use the Wikipedia viewership statistics as a proxy for public engagement with climate 

change and health, it is key to select articles that are representative of these topics. To generate the 

populations of articles related to climate change on the one hand and health on the other, a semi-

automated approach is implemented. Based on an initial set of keywords, a search was undertaken for 

related articles using the internal Wikipedia search.  

Keywords 

For climate change articles, the keywords were:  

carbon dioxide, carbon emission, carbon neutral, carbon neutrality, carbon-dioxide, carbon-neutral, 

changing climate, climat, climate action, climate change, climate crisis, climate decay, climate 

emergency, climate neutrality, climate pollutant, climate variability, co2, co2 emission, 

decarbonisation, decarbonization, extreme temperature, extreme weather, ghge, ghges, glacial, global 

environmental change, global warming, green house, green new, greenhouse, greenhouse-gas, ipcc, 

low carbon, net zero, net-zero, ozone, renewable energy, sea ice, sea level, sphere, temperature record.  

For health articles, the seed keywords were:  

air pollution, asthma, cancer, communicable disease, diagnosis, diarrhoea, disease, diseases, disorder, 

epidemic, epidemics, epidemiolog, epidemiology, epidemy, fever, health, health care, healthcare, 

hunger, icide, illness, illnesses, infection, infectious, itis, malaria, malnourishment, malnutrition, 

measles, mental disorder, mental disorders, morbidity, mortality, ncd, ncds, non-communicable 

disease, noncommunicable disease, nutrition, nutrition, osis, pandemic, pandemics, pediatric, 

pneumonia, psychiatric, public health, sars, stunting, syndrome. 

Article processing 

For each search using one of the keywords, the first 100 results were extracted and identified that led 

to an article with a minimum word count of 300, ensuring that the articles that were chosen as seed 

articles had been given a certain degree of attention by Wikipedia editors, therefore being more likely 

to link to other relevant articles.  

Next, the articles collected via the Wikipedia search for categories were screened, which are used on 

the Wikipedia to categorise pages in a meaningful way (e.g., using categories such as Climate change 

or Effects of climate_change). Those categories were then themselves screened for relevant articles. 

All additional articles were once more filtered such that those with a title matching one of the initial 

keywords was chosen. For the health-related articles, several articles were excluded manually after 

they turned out to be irrelevant for the purposes of this indicator. Health topics are covered 

extensively on Wikipedia, but a decision was made to prioritise articles and topics that, in principle, 

can be related to climate change. In addition, the fact that the Wikipedia page on the effects of climate 

change on human health offers a variety of links to further health-related articles was exploited. This 

https://en.wikipedia.org/wiki/Effects_of_climate_change_on_human_health
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is seen as a curated list of relevant health articles and added those links to the list. The complete list of 

articles is recorded under Additional Information.  

For the clickstream analysis, the set of articles was extended by also taking “second-level pages” into 

account, that is, pages that are linked to in the initially identified set of climate change or health 

articles and that are also somewhat related to climate change or health. Sometimes, people might not 

directly jump from one of the major articles on climate change to another one on health, but travel 

through an intermediary page (e.g., a possible individual stream of clicks could be: Climate change >  

Human impact on the environment > Respiratory disease). The clickstream data only allows the 

identification of click volume for pairs of articles, but by extending the network, it is possible to also 

capture clickstreams involving relevant pages that are linked in the original set of articles. 

Technically, the fact that the population of health articles is far larger than the population of climate 

change articles does not invalidate the measurement strategy. It seems plausible that there are much 

more articles on health-related than on climate change-related topics because the health field is so 

much broader (which is one reason why the health articles cluster in the network plot is not that dense 

– some health topics are really far apart from each other, although both could be covering health 

issues that are affected by climate change). But this should not directly affect the metrics. Even if 

there are many more health than climate change articles, it could still be that health topics are 

mentioned (and clicked on) much more often in climate change articles than the other way around.  

What is key in the analysis is not that one or the other topic is more extensively covered on the 

platform, but the co-visit patterns. 

Data 

The indicator draws on publicly available data from the Wikimedia foundation. It considers data from 

all platforms, i.e., accesses to the Wikipedia via desktop machines, mobile browsers, and mobile apps.  

The clickstream data were downloaded from the Wikimedia Dumps 

(https://dumps.wikimedia.org/other/clickstream/). Spider traffic (i.e., traffic generated by automated 

bots crawling the platform) is excluded. Referrer-resource pairs (i.e., the pairs of the article of origin 

and the target article) that had less than 10 clicks were removed in the original dataset, so there is an 

expectation that the indicator will slightly underreport the actual clickstream traffic. However, it is not 

expected that this will add any systematic bias to the indicators in particular since the interest lies 

mainly in changes of engagement over time. 

Clickstream data are available from November 2017 onwards. In this report, data is used from 2018 to 

2022. The analyses are limited to the English Wikipedia. 

The benefits of the Wikipedia usage metadata for the purpose of tracking public engagement in 

climate change and health are that these data (a) are globally available, (b) cover the time period of 

interest, (c) are collectible at virtually no cost, and, most importantly, (d) have high face validity to 

measure engagement in this very specific topic. Reading articles on Wikipedia is motivated by 

attention towards a particular issue. Individuals invest time to inform themselves about a topic, which 

is one manifestation of engagement. Aggregate reading behaviour can therefore be seen as an a priori 

valid approximation of public issue engagement. 

Caveat 

All clickstream information is only available at the aggregate level. It is not possible to link the data to 

information about individuals who visited the platform. Also, the data are not geo-referenced, so it is 

not possible to infer where page visits came from. Although the English Wikipedia is predominantly 

used in English-speaking countries (according to the Wikimedia Traffic Analysis Report, about 40% 

of the traffic on the English Wikipedia comes from the United States), it is a globally popular 

resource. It makes up for 50% of the global traffic to all Wikipedia language editions. Therefore, it 
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can be seen as a global indicator of public attention that is somewhat biased towards attention from 

countries such as the United States, United Kingdom, India, Canada, and Australia. Extending the 

analyses to other language editions will help to remedy this bias and uncover potential geographic 

engagement heterogeneity in the future. 

More generally, the measure represents an online proxy for an offline phenomenon. In addition, it is 

sensitive towards the selection of articles used to capture engagement. The global popularity of the 

platform, which consistently ranks among the ten most visited websites worldwide, speaks in favour 

of its usefulness for this application. However, more direct indicators of public engagement, such as 

survey-based measures, might provide a useful supplement and source for validation in the future.  

While the data are available for free, access to future data depends on the Wikimedia API. There is no 

indication of Wikimedia restricting access in the future. Instead, Wikimedia has invested in data 

quality and making access more robust and convenient. 

Additional information 

List of English Wikipedia articles used to track public engagement in climate change 

2001 United Nations Climate Change Conference, 2014 People's Climate March, 2016 United Nations Climate Change 

Conference, 2017 People's Climate March, 2019 in climate change, 2020 in climate change, 2021 in climate change, 2021 

Leaders Summit on Climate, 2021 United Nations Climate Change Conference, 2022 in climate change, 2022 United 

Nations Climate Change Conference, 4 Degrees and Beyond International Climate Conference, A Green New Deal, Abrupt 

climate change, Action for Climate Empowerment, Advisory Group on Greenhouse Gases, American Association of State 

Climatologists, American College & University Presidents' Climate Commitment, Amundsen-Nobile Climate Change 

Tower, Anjali Sharma (climate activist), Antarctic sea ice, APEC Climate Center, Arctic Climate Impact Assessment, Arctic 

sea ice decline, Asia-Pacific Partnership on Clean Development and Climate, Asilomar International Conference on Climate 

Intervention Technologies, Association for Renewable Energy and Clean Technology, Atmosphere of Earth, Attorney 

General of Virginia's climate science investigation, Attribution of recent climate change, Australian Greenhouse Office, 

Australian Renewable Energy Agency, Aventine Renewable Energy, Aviation and climate change, Avoiding Dangerous 

Climate Change (2005 conference), Bali Declaration by Climate Scientists, Bangladesh Climate Change Resilience Fund, 

Bangladesh Climate Change Trust, Bay Area Climate Collaborative, Biber-Danube interglacial, Bioclimatology, Bjerknes 

Centre for Climate Research, Boulder Climate Action Plan, Bristol Youth Strike 4 Climate, Business action on climate 

change, C40 Cities Climate Leadership Group, California Climate Action Registry, California Climate Credit, California 

Climate Executive Orders, Camp for Climate Action, Campaign against Climate Change, Canadian Youth Climate 

Coalition, Carbon dioxide, Carbon dioxide (data page), Carbon dioxide angiography, Carbon dioxide clathrate, Carbon 

dioxide cleaning, Carbon dioxide flooding, Carbon dioxide generator, Carbon dioxide in Earth's atmosphere, Carbon 

Dioxide Information Analysis Center, Carbon dioxide reforming, Carbon dioxide removal, Carbon dioxide scrubber, Carbon 

Neutral Cities Alliance, Carbon neutrality, Carbon Neutrality Coalition, Carbon-dioxide laser, Carbon-neutral fuel, Center 

for Climate and Energy Solutions, Center for Climate and Life, Center for the Study of Carbon Dioxide and Global Change, 

Centre for Climate Change Economics and Policy, Centre for International Climate and Environmental Research, Centre for 

Renewable Energy, Centre for Renewable Energy Systems Technology, Chemosphere (journal), Chesapeake Climate Action 

Network, Chicago Climate Action Plan, Chicago Climate Exchange, Cities for Climate Protection program, Citizens 

Convention for Climate, Citizens' Climate Lobby, Civil Society Coalition on Climate Change, Climate, Climate 200, 

Climate across Cretaceous–Paleogene boundary, Climate action, Climate Action Network, Climate Action Network Latin 

America, Climate Action Tracker, Climate Alliance, Climate and Clean Air Coalition to Reduce Short-Lived Climate 

Pollutants, Climate and Development, Climate and Development Knowledge Network, Climate and Ecological Emergency 

Bill, Climate and energy, Climate apocalypse, Climate appraisal, Climate as complex networks, Climate Audit, Climate 

Capitalism, Climate Case Ireland, Climate categories in viticulture, Climate Central, Climate change, Climate Change 

(Scotland) Act 2009, Climate Change Accountability Act (Bill C-224), Climate change acronyms, Climate Change Act 

2008, Climate change adaptation, Climate change adaptation strategies on the German coast, Climate Change Agreement 

(UK), Climate change and agriculture in the United States, Climate change and birds, Climate change and children, Climate 

change and cities, Climate Change and Emissions Management Amendment Act, Climate change and fisheries, Climate 

change and gender, Climate change and indigenous peoples, Climate change and infectious diseases, Climate change and 

invasive species, Climate change and poverty, Climate Change and Sustainable Energy Act 2006, Climate change and 

wildfires, Climate change art, Climate Change Authority, Climate Change Capital, Climate Change Commission, Climate 

Change Committee, Climate change conspiracy theory, Climate Change Denial, Climate Change Denial Disorder, Climate 

change education, Climate change feedback, Climate change in Afghanistan, Climate change in Alabama, Climate change in 

Alaska, Climate change in Algeria, Climate change in American Samoa, Climate change in Antarctica, Climate change in 

Argentina, Climate change in Arizona, Climate change in Arkansas, Climate change in Asia, Climate change in Australia, 

Climate change in Austria, Climate change in Bangladesh, Climate change in Belgium, Climate change in Bosnia and 
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Herzegovina, Climate change in Brazil, Climate change in California, Climate change in Cambodia, Climate change in 

Canada, Climate change in China, Climate change in Colorado, Climate change in Connecticut, Climate change in Cyprus, 

Climate change in Delaware, Climate change in Ethiopia, Climate change in Fiji, Climate change in Finland, Climate change 

in Florida, Climate change in France, Climate change in Georgia (U.S. state), Climate change in Germany, Climate change 

in Ghana, Climate change in Greenland, Climate change in Grenada, Climate change in Guam, Climate change in 

Guatemala, Climate change in Honduras, Climate change in Idaho, Climate change in Illinois, Climate change in India, 

Climate change in Indiana, Climate change in Indonesia, Climate change in Iowa, Climate change in Iran, Climate change in 

Iraq, Climate change in Israel, Climate change in Italy, Climate change in Japan, Climate change in Jordan, Climate change 

in Kansas, Climate change in Kentucky, Climate change in Kenya, Climate change in Kyrgyzstan, Climate change in 

Liberia, Climate change in Louisiana, Climate change in Luxembourg, Climate change in Madagascar, Climate change in 

Maine, Climate change in Malaysia, Climate change in Maryland, Climate change in Massachusetts, Climate change in 

Mexico, Climate change in Michigan, Climate change in Minnesota, Climate change in Mississippi, Climate change in 

Missouri, Climate change in Mongolia, Climate change in Montana, Climate change in Morocco, Climate change in 

Myanmar, Climate change in Nebraska, Climate change in Nepal, Climate change in Nevada, Climate change in New 

Hampshire, Climate change in New Jersey, Climate change in New Mexico, Climate change in New York (state), Climate 

change in New York City, Climate change in New Zealand, Climate change in Nigeria, Climate change in North Carolina, 

Climate change in North Dakota, Climate change in North Korea, Climate change in Norway, Climate change in Ohio, 

Climate change in Oklahoma, Climate change in Oregon, Climate change in Pakistan, Climate change in Pennsylvania, 

Climate change in popular culture, Climate change in Puerto Rico, Climate change in Rhode Island, Climate change in 

Russia, Climate change in Saskatchewan, Climate change in Scotland, Climate change in Senegal, Climate change in South 

Africa, Climate change in South Asia, Climate change in South Carolina, Climate change in South Dakota, Climate change 

in South Korea, Climate change in Spain, Climate change in Sri Lanka, Climate change in Suriname, Climate change in 

Sweden, Climate change in Taiwan, Climate change in Tanzania, Climate change in Tennessee, Climate change in Thailand, 

Climate change in the Arctic, Climate change in the Caribbean, Climate change in the Democratic Republic of the Congo, 

Climate change in the Gambia, Climate change in the Maldives, Climate change in the Marshall Islands, Climate change in 

the Middle East and North Africa, Climate change in the Netherlands, Climate change in the Pacific Islands, Climate change 

in the Philippines, Climate change in the Republic of Ireland, Climate change in the United Kingdom, Climate change in the 

United States, Climate change in Turkey, Climate change in Tuvalu, Climate change in Uganda, Climate change in Uruguay, 

Climate change in Utah, Climate change in Vermont, Climate change in Vietnam, Climate change in Virginia, Climate 

change in Washington (state), Climate change in Washington, D.C., Climate change in West Virginia, Climate change in 

Wisconsin, Climate change in Wyoming, Climate Change Levy, Climate change litigation, Climate change mitigation, 

Climate change mitigation framework, Climate Change Performance Index, Climate change policy of California, Climate 

change policy of the George W. Bush administration, Climate change policy of the United States, Climate Change Response 

(Emissions Trading) Amendment Act 2008, Climate Change Response (Zero Carbon) Amendment Act, Climate Change 

Response Act 2002, Climate change scenario, Climate Change Science Program, Climate Change TV, Climate change 

vulnerability, Climate Change: Global Risks, Challenges and Decisions, Climate classification, Climate Commission, 

Climate commitment, Climate communication, Climate Council, Climate crisis, Climate Crisis Advisory Group, Climate 

Data Operators, Climate debt, Climate Denial Crock of the Week, Climate Disclosure Standards Board, Climate Doctrine of 

the Russian Federation, Climate Dynamics, Climate emergency declaration, Climate emergency declarations in Australia, 

Climate emergency declarations in New Zealand, Climate emergency declarations in the United Kingdom, Climate 

engineering, Climate ensemble, Climate fiction, Climate footprint, Climate forcing, Climate governance, Climate Hawks 

Vote, Climate Hustle, Climate inertia, Climate Investment Funds, Climate justice, Climate Justice Action, Climate Justice 

Alliance, Climate Justice Now!, Climate Law and Governance Initiative, Climate Leadership Council, Climate migrant, 

Climate Mirror, Climate model, Climate Monitoring and Diagnostics Laboratory, Climate movement, Climate of Agra, 

Climate of Albania, Climate of ancient Rome, Climate of Argentina, Climate of Armenia, Climate of Australia, Climate of 

Azerbaijan, Climate of Bangladesh, Climate of Barcelona, Climate of Bihar, Climate of Bilbao, Climate of Brazil, Climate 

of Budapest, Climate of Buenos Aires, Climate of Cebu, Climate of Chile, Climate of China, Climate of Colombia, Climate 

of Cyprus, Climate of Delhi, Climate of Dubai, Climate of East Anglia, Climate of Ecuador, Climate of Egypt, Climate of 

Estonia, Climate of Ethiopia, Climate of Finland, Climate of Ghana, Climate of Gibraltar, Climate of Greece, Climate of 

Gujarat, Climate of Himachal Pradesh, Climate of Hungary, Climate of Iceland, Climate of India, Climate of Indonesia, 

Climate of Ireland, Climate of Italy, Climate of Kaziranga National Park, Climate of Kolkata, Climate of Kosovo, Climate of 

Lisbon, Climate of Madrid, Climate of Malta, Climate of Manitoba, Climate of Mexico, Climate of Moscow, Climate of 

Mumbai, Climate of Myanmar, Climate of New England, Climate of New Zealand, Climate of Nigeria, Climate of Norway, 

Climate of Nova Scotia, Climate of Pakistan, Climate of Paraguay, Climate of Paris, Climate of Peru, Climate of Porto, 

Climate of Puerto Rico, Climate of Rajasthan, Climate of Romania, Climate of Rome, Climate of Russia, Climate of Saudi 

Arabia, Climate of Seoul, Climate of Serbia, Climate of Sochi, Climate of South Africa, Climate of South Brazil, Climate of 

Southeast Brazil, Climate of Spain, Climate of Svalbard, Climate of Sweden, Climate of Tamil Nadu, Climate of Tasmania, 

Climate of the British Isles, Climate of the Falkland Islands, Climate of the Philippines, Climate of the United Kingdom, 

Climate of the United States, Climate of Turkey, Climate of Uruguay, Climate of Uttar Pradesh, Climate of Valencia, 

Climate of Venezuela, Climate of Vietnam, Climate of Wales, Climate of West Bengal, Climate of Zambia, Climate One, 

Climate Policy (journal), Climate Policy Initiative, Climate prediction, Climate Prediction Center, Climate psychology, 

Climate Refugees, Climate reparations, Climate Research (journal), Climate resilience, Climate restoration, Climate risk, 



222 

 

Climate risk insurance, Climate risk management, Climate Savers Computing Initiative, Climate Science Legal Defense 

Fund, Climate Science Rapid Response Team, Climate security, Climate sensitivity, Climate Solutions Caucus, Climate 

Solutions Road Tour, Climate spiral, Climate Stewardship Acts, Climate TRACE, Climate variability and change, Climate 

Vulnerability Monitor, Climate Vulnerable Forum, Climate Watch, Climate Week NYC, Climate-Alliance Germany, 

Climate-friendly gardening, Climate-friendly school, Climate-smart agriculture, Climate: Long range Investigation, 

Mapping, and Prediction, Climatic Change (journal), Climatic geomorphology, Climatic regions of Argentina, Climatic 

Research Unit documents, Climatic Research Unit email controversy, Climatological normal, Climatology, Cloud formation 

and climate change, Co-benefits of climate change mitigation, CO2 (opera), CO2 Coalition, CO2 fertilization effect, CO2 is 

Green, CO2balance, Committee on Climate Change Science and Technology Integration, Cool It: The Skeptical 

Environmentalist's Guide to Global Warming, Copenhagen Climate Challenge, Copper in renewable energy, Criticism of the 

IPCC Fourth Assessment Report, Danube-Gunz interglacial, Debate over China's economic responsibilities for climate 

change mitigation, Decarbonisation measures in proposed UK electricity market reform, Deep Decarbonization Pathways 

Project, Deforestation and climate change, Dendroclimatology, Department of the Environment, Climate and 

Communications, Description of the Medieval Warm Period and Little Ice Age in IPCC reports, Desert climate, Disability 

and climate change, Drawdown (climate), Earth rainfall climatology, East Asia Climate Partnership, Economic impacts of 

climate change, Economics of climate change, Economics of climate change mitigation, Economists' Statement on Climate 

Change, Ecosphere (social enterprise), Ed Hawkins (climatologist), Effects of climate change, Effects of climate change on 

agriculture, Effects of climate change on ecosystems, Effects of climate change on human health, Effects of climate change 

on mental health, Effects of climate change on oceans, Effects of climate change on plant biodiversity, Effects of climate 

change on small island countries, Effects of climate change on terrestrial animals, Effects of climate change on the water 

cycle, Effects of global warming, Effects of global warming on human health, Effects of global warming on humans, Effects 

of global warming on the United Arab Emirates, Electrochemical reduction of carbon dioxide, Euro-Mediterranean Center 

on Climate Change, European Assembly for Climate Justice, European Climate Change Programme, European Climate 

Exchange, European Climate Forum, European Climate Foundation, European Climate, Infrastructure and Environment 

Executive Agency, European Renewable Energy Council, European Union climate and energy package, Evangelical Climate 

Initiative, Exposing Microorganisms in the Stratosphere, Extreme weather, ExxonMobil climate change denial, Federal 

Ministry for Economic Affairs and Climate Action, Fennec (climate program), Fourth National Climate Assessment, 

Freedom of Information requests to the Climatic Research Unit, G8 Climate Change Roundtable, Garnaut Climate Change 

Review, Generation Climate Europe, Geologic temperature record, German Climate Action Plan 2050, German Climate 

Consortium, German Renewable Energy Sources Act, Ghana Climate Innovation Centre, Glasgow Climate Pact, Global 

Atmosphere Watch, Global Climate Action (portal), Global Climate Action Summit, Global Climate and Energy Project, 

Global Climate and Health Alliance, Global Climate Coalition, Global Climate March, Global Climate Network, Global 

climate regime, Global Covenant of Mayors for Climate & Energy, Global Day of Climate Action 2020, Global 

Environmental Change, Global Historical Climatology Network, Global Roundtable on Climate Change, Global temperature 

record, Global warming controversy, Global warming game, Global warming hiatus, Global Warming Pollution Reduction 

Act of 2007, Global warming potential, Global Warming Solutions Act of 2006, Global Warming: The Signs and The 

Science, Global Warming: What You Need to Know, Glossary of climate change, Gorgon Carbon Dioxide Injection Project, 

Grande-Synthe climate case, Great March for Climate Action, Green Climate Fund, Green House Data, Green New Deal, 

Greenhouse and icehouse Earth, Greenhouse debt, Greenhouse Development Rights, Greenhouse effect, Greenhouse gas, 

Greenhouse gas emissions, Greenhouse gas emissions by Australia, Greenhouse gas emissions by China, Greenhouse gas 

emissions by Russia, Greenhouse gas emissions by the United Kingdom, Greenhouse gas emissions by the United States, 

Greenhouse gas emissions by Turkey, Greenhouse gas emissions from agriculture, Greenhouse gas emissions in Kentucky, 

Greenhouse gas inventory, Greenhouse gas monitoring, Greenhouse Gas Pollution Pricing Act, Greenhouse Gases 

Observing Satellite, Greenhouse Gases Observing Satellite-2, Greenhouse Mafia, Greenhouse Solutions with Sustainable 

Energy, Ground-level ozone, Gussing Renewable Energy, High Council on Climate, High Level Advisory Group on Climate 

Financing, High Plains Regional Climate Center, Highest temperature recorded on Earth, Highland temperate climate, 

Historical climatology, History of climate change policy and politics, History of climate change science, Holocene climatic 

optimum, Homogenization (climate), How Global Warming Works, How to Prepare for Climate Change, Human rights and 

climate change, Humid temperate climate, Ice cap climate, Idealized greenhouse model, Illustrative model of greenhouse 

effect on climate change, Index of climate change articles, India Climate Collaborative, Indian Network on Climate Change 

Assessment, Indian Youth Climate Network, Indigenous Peoples Climate Change Assessment Initiative, Individual action on 

climate change, Inside Climate News, Instrumental temperature record, Intergovernmental Panel on Climate Change, Interim 

Climate Change Committee, International Climate Change Partnership, International Comprehensive Ocean-Atmosphere 

Data Set, International Conference on Climate Change, International Geosphere-Biosphere Programme, International 

Indigenous Peoples Forum on Climate Change, International Journal of Climatology, International Journal of Greenhouse 

Gas Control, International Renewable Energy Agency, International Satellite Cloud Climatology Project, IPCC Fifth 

Assessment Report, IPCC First Assessment Report, IPCC Fourth Assessment Report, IPCC list of greenhouse gases, IPCC 

Second Assessment Report, IPCC Sixth Assessment Report, IPCC Summary for Policymakers, IPCC supplementary report, 

1992, IPCC Third Assessment Report, Johannesburg Renewable Energy Coalition, Journal for Geoclimatic Studies, Journal 

of Applied Meteorology and Climatology, Journal of Climate, Laboratoire des sciences du climat et de l'environnement, 

Land surface effects on climate, Life-cycle greenhouse gas emissions of energy sources, Liquid carbon dioxide, List of 

abbreviations relating to climate change, List of books about renewable energy, List of climate activists, List of climate 
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change books, List of climate change initiatives, List of climate engineering topics, List of climate research satellites, List of 

climate scientists, List of countries and territories by extreme temperatures, List of countries by carbon dioxide emissions, 

List of countries by carbon dioxide emissions per capita, List of countries by greenhouse gas emissions, List of countries by 

greenhouse gas emissions per capita, List of extreme temperatures in Australia, List of extreme temperatures in Canada, List 

of extreme temperatures in Denmark, List of extreme temperatures in Finland, List of extreme temperatures in France, List 

of extreme temperatures in Germany, List of extreme temperatures in Greece, List of extreme temperatures in Italy, List of 

extreme temperatures in Japan, List of extreme temperatures in Portugal, List of extreme temperatures in Spain, List of 

extreme temperatures in Sweden, List of extreme temperatures in Vatican City, List of extreme weather records in Pakistan, 

List of films about renewable energy, List of ministers of climate change, List of periods and events in climate history, List 

of planned renewable energy projects, List of renewable energy organizations, List of renewable energy topics by country 

and territory, List of school climate strikes, List of U.S. states and territories by carbon dioxide emissions, List of women 

climate scientists and activists, Lists of renewable energy topics, London Climate Change Agency, Low Carbon 

Communities, Low Carbon Vehicle Event, Lowest temperature recorded on Earth, Major Economies Forum on Energy and 

Climate Change, Maldivian Youth Climate Network, Mandatory renewable energy target, Mayors National Climate Action 

Agenda, Media coverage of climate change, Mercator Research Institute on Global Commons and Climate Change, 

Microclimate, Mid-24th century BCE climate anomaly, Midwestern Greenhouse Gas Reduction Accord, Millennium 

Alliance for Humanity and the Biosphere, Minister for Climate Change (New Zealand), Minister for Climate Change and 

Energy, Ministry of Climate and Environment (Poland), Ministry of Climate Change (Pakistan), Ministry of Climate, Energy 

and Utilities (Denmark), Ministry of Economic Affairs and Climate Policy, Ministry of Electricity and Renewable Energy 

(Egypt), Ministry of Environment, Forest and Climate Change, Ministry of New and Renewable Energy, Monsoon 

continental climate, Monthly Climatic Data for the World, Mumbai Climate Action Plan, Music of the Spheres World Tour, 

Muslim Seven Year Action Plan on Climate Change, Mycorrhizae and climate change, National Action Plan for Climate 

Change, National Climate Assessment, National Climate Change Secretariat, National Climatic Data Center, National 

Initiative on Climate Resilient Agriculture, National Oceanic and Atmospheric Administration Climate and Societal 

Interactions Program, National Renewable Energy Action Plan, National Solar Conference and World Renewable Energy 

Forum 2012, Nature Climate Change, New and Renewable Energy Authority, New England Governors and Eastern 

Canadian Premiers Climate Change Action Plan 2001, New South Wales Greenhouse Gas Abatement Scheme, New York 

City Panel on Climate Change, Nigeria Renewable Energy Master Plan, Noordwijk Climate Conference, North African 

climate cycles, Nuclear power proposed as renewable energy, NZ Climate Party, Office of Energy Efficiency and Renewable 

Energy, OneClimate, Ozone, Ozone depletion, Ozone depletion and climate change, Pacific Climate Warriors, 

Palaeogeography, Palaeoclimatology, Palaeoecology, Pan African Climate Justice Alliance, Pan-African Media Alliance on 

Climate Change, Pan-Canadian Framework on Clean Growth and Climate Change, Pastoral Greenhouse Gas Research 

Consortium, People's Climate Movement, Photochemical reduction of carbon dioxide, Photoelectrochemical reduction of 

carbon dioxide, Physical properties of greenhouse gases, Poland National Renewable Energy Action Plan, Political economy 

of climate change, Politics of climate change, Portal:Climate change, Portal:Renewable energy, Potsdam Institute for 

Climate Impact Research, Premier's Climate Change Council, Presbyterian Church (U.S.A.) Carbon Neutral Resolution, 

Presidential Climate Action Plan, Program for Climate Model Diagnosis and Intercomparison, Program on Energy 

Efficiency in Artisanal Brick Kilns in Latin America to Mitigate Climate Change, Proxy (climate), Psychological impact of 

climate change, Psychology of climate change denial, Public opinion on climate change, Punjab Renewable Energy Systems 

Pvt. Ltd., R20 Regions of Climate Action, Rapid Climate Change-Meridional Overturning Circulation and Heatflux Array, 

Recognizing the duty of the Federal Government to create a Green New Deal, Reflective surfaces (climate engineering), 

Regional climate levels in viticulture, Regional Greenhouse Gas Initiative, Regulation of greenhouse gases under the Clean 

Air Act, Renewable energy, Renewable Energy (journal), Renewable energy and mining, Renewable Energy Certificate 

(United States), Renewable Energy Certificate System, Renewable Energy Certificates Registry, Renewable energy 

commercialization, Renewable energy cooperative, Renewable energy debate, Renewable energy in Brunei, Renewable 

energy in developing countries, Renewable energy in Luxembourg, Renewable energy industry, Renewable Energy 

Payments, Renewable energy policy of Bangladesh, Renewable energy sculpture, Renewable Energy Sources and Climate 

Change Mitigation, Runaway greenhouse effect, Running on Climate, San Diego Climate Action Plan, San Francisco 

Climate Action Plan, Save the Climate, School Strike for Climate, Scientific consensus on climate change, Scorcher: The 

Dirty Politics of Climate Change, Sea ice emissivity modelling, Sea ice growth processes, Sea ice thickness, Sea level rise, 

Seawater greenhouse, September 2019 climate strikes, Singularity (climate), Skin temperature (of an atmosphere), Soft 

climate change denial, Soil-plant-atmosphere continuum, Solar activity and climate, Solar Renewable Energy Certificate, 

South Pacific Sea Level and Climate Monitoring Project, Space mirror (climate engineering), Space-based measurements of 

carbon dioxide, Special Report on Climate Change and Land, Special Report on the Ocean and Cryosphere in a Changing 

Climate, State of the Climate, Stratospheric Processes And their Role in Climate, Subhumid temperate climate, Supercritical 

carbon dioxide, Surface Ocean Lower Atmosphere Study, Surveys of scientists' views on climate change, Sweden National 

Renewable Energy Action Plan, Table of historic and prehistoric climate indicators, Tarawa Climate Change Conference, 

Task Force on Climate Related Financial Disclosures, Temperature record of the last 2,000 years, Template:Climate change 

in Canada, Template:Climate-change-book-stub, Template:Climate-change-stub, Template:Climate-journal-stub, 

Template:Climate-stub, Territorial Approach to Climate Change, The Climate Group, The Climate Mobilization, The 

Climate Reality Project, The Climate Registry, The Discovery of Global Warming, The Doubt Machine: Inside the Koch 

Brothers' War on Climate Science, The Great Derangement: Climate Change and the Unthinkable, The Great Global 
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Warming Swindle, The Greenhouse Conspiracy, The Islamic Declaration on Global Climate Change, The New Climate War, 

Theoretical and Applied Climatology, Thornthwaite climate classification, Tianjin Climate Exchange, Timeline of 

international climate politics, Tipping points in the climate system, Top contributors to greenhouse gas emissions, Tornado 

climatology, Toronto Conference on the Changing Atmosphere, Transatlantic Climate Bridge, Transient climate response to 

cumulative carbon emissions, Transportation and Climate Initiative, Trewartha climate classification, Tropical cyclones and 

climate change, Tropospheric ozone depletion events, U.S. Climate Action Partnership, U.S. Climate Change Technology 

Program, U.S. Special Presidential Envoy for Climate, UK Climate Assembly, UK Health Alliance on Climate Change, 

United Kingdom Climate Change Programme, United Kingdom National Renewable Energy Action Plan, United Nations 

Special Envoy on Climate Change, United States Climate Alliance, United States federal register of greenhouse gas 

emissions, United States House Select Committee on Energy Independence and Global Warming, United States House 
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Population health, Population health policies and interventions, Population, health, and the environment, Portal:Pandemics, 

Postorgasmic illness syndrome, Pott disease, Pravastatin or atorvastatin evaluation and infection therapy - thrombolysis in 

myocardial infarction 22, Prebiotic (nutrition), Pregnancy-associated malaria, President's Malaria Initiative, Prevalence of 

mental disorders, Prevention of mental disorders, Preventive nutrition, Price-Pottenger Nutrition Foundation, Primary Health 

Centre (India), Prime Healthcare Services, Prison healthcare, Program for Jewish Genetic Health, Progressive disease, 

Providence Health & Services, Providence St. Joseph Health, Psychiatric epidemiology, Psychogenic disease, Public health, 

Public Health Agency of Canada, Public Health Agency of Sweden, Public Health England, Public health insurance option, 

Public health observatory, Public health policy, Public health problems in the Aral Sea region, Public Health Scotland, 

Public health system in India, Public Health Wales, Publicly funded health care, Pullorum disease, Qapqal disease, Quantum 

suicide and immortality, Race and health, Race and maternal health in the United States, RAND Health Insurance 

Experiment, Rare disease, Reactive airway disease, Real-time outbreak and disease surveillance, Regional Forum on 

Environment and Health in Southeast and East Asian Countries, Reproductive health care for incarcerated women in the 

United States, Reproductive system disease, Respiratory disease, Respiratory tract infection, Rheumatoid disease of the 

spine, Right to health, Salt and cardiovascular disease, Samaritan Health Services, Saprotrophic nutrition, SARS, SARS-

CoV-1, SARS-CoV-2, SARS-CoV-2 Beta variant, SARS-CoV-2 Delta variant, SARS-CoV-2 Eta variant, SARS-CoV-2 

Gamma variant, SARS-CoV-2 Kappa variant, SARS-CoV-2 Mu variant, SARS-CoV-2 Omicron variant, Scandinavian 

Journal of Work, Environment & Health, School-based health centers, Science diplomacy and pandemics, Second plague 

pandemic, Self-rated health, Sentara Healthcare, Serious mental illness, Services for mental disorders, Seventh cholera 

pandemic, Sexual and reproductive health, Sexual and Reproductive Health Matters, Sexual health clinic, Sexually 

transmitted infection, Single-payer healthcare, Sissel v. United States Department of Health & Human Services, Skin and 

skin structure infection, Skin infection, Smallpox epidemic, Social Psychiatry and Psychiatric Epidemiology, Society for 

Family Health Nigeria, Society of Infectious Diseases Pharmacists, Socioeconomic status and mental health, South African 

Malaria Initiative, South Texas Center for Emerging Infectious Diseases, Southern tick-associated rash illness, Spanish 

National Health System, Spatial and Spatio-temporal Epidemiology, Spatial epidemiology, Specific replant disease, St. 

Patrick Hospital and Health Sciences Center, St. Vincent's Health System, Stateville Penitentiary Malaria Study, Statistics of 

the COVID-19 pandemic in Argentina, Statistics of the COVID-19 pandemic in Australia, Statistics of the COVID-19 

pandemic in Bangladesh, Statistics of the COVID-19 pandemic in Brazil, Statistics of the COVID-19 pandemic in Chile, 

Statistics of the COVID-19 pandemic in Germany, Statistics of the COVID-19 pandemic in India, Statistics of the COVID-

19 pandemic in Indonesia, Statistics of the COVID-19 pandemic in Italy, Statistics of the COVID-19 pandemic in Japan, 

Statistics of the COVID-19 pandemic in Tamil Nadu, STOP Foodborne Illness, Strengthening the reporting of observational 

studies in epidemiology, Streptococcus pneumoniae, Study of Health in Pomerania, Suicide epidemic, Superinfection, 

Susceptibility and severity of infections in pregnancy, Sutter Health, Sweating sickness epidemics, Swedish Association of 

Health Professionals, Systemic disease, Taiwan Centers for Disease Control, Tanganyika laughter epidemic, Target Malaria, 

Tay–Sachs disease, Template:Ascension Health, Template:Epidemic-stub, Template:Eradication of infectious disease, 

Template:Infectious-disease-stub, Template:Malaria, Template:Mental disorders, Template:Plant nutrition, 

Template:Vertically transmitted infection, Template:Women's health, Tenet Healthcare, Texas Health Huguley Hospital Fort 

Worth South, The European Journal of Health Economics, The Global Fund to Fight AIDS, Tuberculosis and Malaria, The 

Journal of Mental Health Policy and Economics, The Medical Center, Navicent Health, The Office of Health Economics, 

Theiler's disease, Tick-borne disease, Tick-Borne Disease Alliance, Timeline of peptic ulcer disease and Helicobacter pylori, 

Timeline of the COVID-19 pandemic in Afghanistan, Timeline of the COVID-19 pandemic in Argentina, Timeline of the 

COVID-19 pandemic in Australia, Timeline of the COVID-19 pandemic in Australia (2022), Timeline of the COVID-19 

pandemic in Bangladesh, Timeline of the COVID-19 pandemic in Belarus, Timeline of the COVID-19 pandemic in Belarus 

(2020), Timeline of the COVID-19 pandemic in Belarus (2021), Timeline of the COVID-19 pandemic in Belarus (2022), 

Timeline of the COVID-19 pandemic in Brazil, Timeline of the COVID-19 pandemic in Canada, Timeline of the COVID-19 

pandemic in Colombia, Timeline of the COVID-19 pandemic in Croatia, Timeline of the COVID-19 pandemic in Fiji, 

Timeline of the COVID-19 pandemic in Ghana, Timeline of the COVID-19 pandemic in India, Timeline of the COVID-19 

pandemic in India (2021), Timeline of the COVID-19 pandemic in Indonesia, Timeline of the COVID-19 pandemic in 

Indonesia (2020), Timeline of the COVID-19 pandemic in Indonesia (2021), Timeline of the COVID-19 pandemic in 

Indonesia (2022), Timeline of the COVID-19 pandemic in Italy, Timeline of the COVID-19 pandemic in Japan, Timeline of 

the COVID-19 pandemic in Malaysia, Timeline of the COVID-19 pandemic in Malta, Timeline of the COVID-19 pandemic 

in Mexico, Timeline of the COVID-19 pandemic in Nepal, Timeline of the COVID-19 pandemic in New Zealand, Timeline 

of the COVID-19 pandemic in Nigeria, Timeline of the COVID-19 pandemic in Pakistan, Timeline of the COVID-19 

pandemic in Romania, Timeline of the COVID-19 pandemic in Russia, Timeline of the COVID-19 pandemic in Serbia, 

Timeline of the COVID-19 pandemic in Singapore, Timeline of the COVID-19 pandemic in South Africa, Timeline of the 

COVID-19 pandemic in Spain, Timeline of the COVID-19 pandemic in Sweden, Timeline of the COVID-19 pandemic in 

Thailand, Timeline of the COVID-19 pandemic in the Philippines, Timeline of the COVID-19 pandemic in the Republic of 

Ireland, Timeline of the COVID-19 pandemic in the Republic of Ireland (2021), Timeline of the COVID-19 pandemic in the 

Republic of Ireland (2022), Timeline of the COVID-19 pandemic in the United Kingdom, Timeline of the COVID-19 

pandemic in the United States, Timeline of the COVID-19 pandemic in Trinidad and Tobago, Timeline of the COVID-19 

pandemic in Turkey, Timeline of the COVID-19 pandemic in Uruguay, Timeline of the COVID-19 pandemic in Vietnam, 
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Timeline of the SARS-CoV-2 Omicron variant, Top dying disease, Trauma model of mental disorders, Treatment of mental 

disorders, Tropical disease, Typhus epidemic in Goose Village, Montreal, UCLA Health, UCLA Health Training Center, 

UCSC Malaria Genome Browser, UK Health Alliance on Climate Change, UK Health Security Agency, Undernutrition, 

Undernutrition in children, Uni Health, Unicentric Castleman disease, UnityPoint Health, UnityPoint Health - Allen 

Hospital, Universal Declaration on the Eradication of Hunger and Malnutrition, University of Edinburgh School of Health in 

Social Science, Ureaplasma urealyticum infection, Use of technology in treatment of mental disorders, Usual interstitial 

pneumonia, Vaccine-preventable diseases, Value-based health care, Vanguard Health Systems, Variant Creutzfeldt–Jakob 

disease, Vegetarian nutrition, Venereal Disease Research Laboratory test, Ventilator-associated pneumonia, Vermont health 

care reform, Vertically transmitted infection, Very early onset inflammatory bowel disease, Victorian Health Promotion 

Foundation, Viral disease testing, Viral pneumonia, Virgin soil epidemic, Waterborne disease and climate change, 

Waterborne diseases, Weather and climate effects on Lyme disease exposure, WHO Hub for Pandemic and Epidemic 

Intelligence, Whole Health Action Management, Wilt disease, Women's health, Women's health movement in the United 

States, Working Environment (Air Pollution, Noise and Vibration) Convention, 1977, Workplace health promotion, World 

Chagas Disease Day, World Health Assembly, World Health Organization, World Health Organization Composite 

International Diagnostic Interview, World Health Organization response to the COVID-19 pandemic in Africa, World 

Malaria Day, World Pneumonia Day, Your Health Idaho 

List of English Wikipedia articles used to track public engagement in the COVID-19 pandemic 

Boroughs of Montreal during the COVID-19 pandemic, Chloroquine and hydroxychloroquine during the COVID-19 

pandemic, Coronavirus diseases, COVID-19, COVID-19 and cancer, COVID-19 pandemic, COVID-19 pandemic by 

country and territory, COVID-19 pandemic in Abkhazia, COVID-19 pandemic in Afghanistan, COVID-19 pandemic in 

Africa, COVID-19 pandemic in Akrotiri and Dhekelia, COVID-19 pandemic in Albania, COVID-19 pandemic in Algeria, 

COVID-19 pandemic in American Samoa, COVID-19 pandemic in Andorra, COVID-19 pandemic in Angola, COVID-19 

pandemic in Antigua and Barbuda, COVID-19 pandemic in Argentina, COVID-19 pandemic in Armenia, COVID-19 

pandemic in Australia, COVID-19 pandemic in Austria, COVID-19 pandemic in Azerbaijan, COVID-19 pandemic in 

Bahrain, COVID-19 pandemic in Bangladesh, COVID-19 pandemic in Barbados, COVID-19 pandemic in Belarus, COVID-

19 pandemic in Belgium, COVID-19 pandemic in Belize, COVID-19 pandemic in Benin, COVID-19 pandemic in Bhutan, 

COVID-19 pandemic in Bolivia, COVID-19 pandemic in Bosnia and Herzegovina, COVID-19 pandemic in Botswana, 

COVID-19 pandemic in Brazil, COVID-19 pandemic in Brunei, COVID-19 pandemic in Bulgaria, COVID-19 pandemic in 

Burkina Faso, COVID-19 pandemic in Burundi, COVID-19 pandemic in Cambodia, COVID-19 pandemic in Cameroon, 

COVID-19 pandemic in Canada, COVID-19 pandemic in Cape Verde, COVID-19 pandemic in Ceuta, COVID-19 pandemic 

in Chad, COVID-19 pandemic in Chile, COVID-19 pandemic in China, COVID-19 pandemic in Christmas Island, COVID-

19 pandemic in Colombia, COVID-19 pandemic in Costa Rica, COVID-19 pandemic in Croatia, COVID-19 pandemic in 

Cuba, COVID-19 pandemic in Cyprus, COVID-19 pandemic in Denmark, COVID-19 pandemic in Djibouti, COVID-19 

pandemic in Dominica, COVID-19 pandemic in East Timor, COVID-19 pandemic in Easter Island, COVID-19 pandemic in 

Ecuador, COVID-19 pandemic in Egypt, COVID-19 pandemic in El Salvador, COVID-19 pandemic in Equatorial Guinea, 

COVID-19 pandemic in Eritrea, COVID-19 pandemic in Estonia, COVID-19 pandemic in Eswatini, COVID-19 pandemic in 

Ethiopia, COVID-19 pandemic in Fiji, COVID-19 pandemic in Finland, COVID-19 pandemic in France, COVID-19 

pandemic in French Polynesia, COVID-19 pandemic in Gabon, COVID-19 pandemic in Georgia (country), COVID-19 

pandemic in Germany, COVID-19 pandemic in Ghana, COVID-19 pandemic in Greece, COVID-19 pandemic in Greenland, 

COVID-19 pandemic in Grenada, COVID-19 pandemic in Guatemala, COVID-19 pandemic in Guernsey, COVID-19 

pandemic in Guinea, COVID-19 pandemic in Guinea-Bissau, COVID-19 pandemic in Guyana, COVID-19 pandemic in 

Haiti, COVID-19 pandemic in Honduras, COVID-19 pandemic in Hungary, COVID-19 pandemic in Iceland, COVID-19 

pandemic in India, COVID-19 pandemic in Indonesia, COVID-19 pandemic in Iran, COVID-19 pandemic in Iraq, COVID-

19 pandemic in Israel, COVID-19 pandemic in Italy, COVID-19 pandemic in Ivory Coast, COVID-19 pandemic in Jamaica, 

COVID-19 pandemic in Japan, COVID-19 pandemic in Jersey, COVID-19 pandemic in Jordan, COVID-19 pandemic in 

Kazakhstan, COVID-19 pandemic in Kenya, COVID-19 pandemic in Kiribati, COVID-19 pandemic in Kosovo, COVID-19 

pandemic in Kuwait, COVID-19 pandemic in Kyrgyzstan, COVID-19 pandemic in Lesotho, COVID-19 pandemic in 

Liberia, COVID-19 pandemic in Libya, COVID-19 pandemic in Madagascar, COVID-19 pandemic in mainland China, 

COVID-19 pandemic in Malawi, COVID-19 pandemic in Maldives, COVID-19 pandemic in Mali, COVID-19 pandemic in 

Mauritania, COVID-19 pandemic in Mauritius, COVID-19 pandemic in Mayotte, COVID-19 pandemic in Melilla, COVID-

19 pandemic in Morocco, COVID-19 pandemic in Mozambique, COVID-19 pandemic in Namibia, COVID-19 pandemic in 

New South Wales, COVID-19 pandemic in Niger, COVID-19 pandemic in Nigeria, COVID-19 pandemic in Norfolk Island, 

COVID-19 pandemic in Normandy, COVID-19 pandemic in Northern Cyprus, COVID-19 pandemic in Northern Ireland, 

COVID-19 pandemic in Puntland, COVID-19 pandemic in Queensland, COVID-19 pandemic in Rwanda, COVID-19 

pandemic in Senegal, COVID-19 pandemic in Seychelles, COVID-19 pandemic in Sierra Leone, COVID-19 pandemic in 

Somalia, COVID-19 pandemic in Somaliland, COVID-19 pandemic in South Africa, COVID-19 pandemic in South 

Australia, COVID-19 pandemic in South Ossetia, COVID-19 pandemic in South Sudan, COVID-19 pandemic in Sudan, 

COVID-19 pandemic in Tanzania, COVID-19 pandemic in Tasmania, COVID-19 pandemic in the Australian Capital 

Territory, COVID-19 pandemic in the Bahamas, COVID-19 pandemic in the Canary Islands, COVID-19 pandemic in the 

Central African Republic, COVID-19 pandemic in the Cocos (Keeling) Islands, COVID-19 pandemic in the Comoros, 

COVID-19 pandemic in the Cook Islands, COVID-19 pandemic in the Czech Republic, COVID-19 pandemic in the 
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Democratic Republic of the Congo, COVID-19 pandemic in the Dominican Republic, COVID-19 pandemic in the Donetsk 

People's Republic, COVID-19 pandemic in the Faroe Islands, COVID-19 pandemic in the Federated States of Micronesia, 

COVID-19 pandemic in the Gambia, COVID-19 pandemic in the Guantanamo Bay Naval Base, COVID-19 pandemic in the 

Isle of Man, COVID-19 pandemic in the Kurdistan Region, COVID-19 pandemic in the Northern Territory, COVID-19 

pandemic in the Republic of Artsakh, COVID-19 pandemic in the Republic of Ireland, COVID-19 pandemic in the Republic 

of the Congo, COVID-19 pandemic in the Sahrawi Arab Democratic Republic, COVID-19 pandemic in Togo, COVID-19 

pandemic in Tunisia, COVID-19 pandemic in Uganda, COVID-19 pandemic in Victoria, COVID-19 pandemic in Western 

Australia, COVID-19 pandemic in Western Sahara, COVID-19 pandemic in Zambia, COVID-19 pandemic in Zimbabwe, 

COVID-19 pandemic on Charles de Gaulle, COVID-19 pandemic on Diamond Princess, Economic impact of the COVID-19 

pandemic in the Republic of Ireland, Face masks during the COVID-19 pandemic, Federal aid during the COVID-19 

pandemic in Canada, German government response to the COVID-19 pandemic, Ghanaian government response to the 

COVID-19 pandemic, Glossary of the COVID-19 pandemic, Impact of the COVID-19 pandemic on children, Impact of the 

COVID-19 pandemic on education in Ghana, Impact of the COVID-19 pandemic on education in the Republic of Ireland, 

Impact of the COVID-19 pandemic on Gaelic games, Impact of the COVID-19 pandemic on human rights in Argentina, 

Indian government response to the COVID-19 pandemic, Indian migrant workers during the COVID-19 pandemic, Indian 

state government responses to the COVID-19 pandemic, International reactions to the COVID-19 pandemic in Italy, List of 

species named after the COVID-19 pandemic, National responses to the COVID-19 pandemic in Africa, Nigerian 

government response to the COVID-19 pandemic, Outline of the COVID-19 pandemic, Pandemic predictions and 

preparations prior to the COVID-19 pandemic, Statistics of the COVID-19 pandemic in Argentina, Statistics of the COVID-

19 pandemic in Australia, Statistics of the COVID-19 pandemic in Bangladesh, Statistics of the COVID-19 pandemic in 

Brazil, Statistics of the COVID-19 pandemic in Chile, Statistics of the COVID-19 pandemic in Germany, Statistics of the 

COVID-19 pandemic in India, Statistics of the COVID-19 pandemic in Indonesia, Statistics of the COVID-19 pandemic in 

Italy, Statistics of the COVID-19 pandemic in Japan, Statistics of the COVID-19 pandemic in Tamil Nadu, Timeline of the 

COVID-19 pandemic in Afghanistan, Timeline of the COVID-19 pandemic in Argentina, Timeline of the COVID-19 

pandemic in Australia, Timeline of the COVID-19 pandemic in Australia (2022), Timeline of the COVID-19 pandemic in 

Bangladesh, Timeline of the COVID-19 pandemic in Belarus, Timeline of the COVID-19 pandemic in Belarus (2020), 

Timeline of the COVID-19 pandemic in Belarus (2021), Timeline of the COVID-19 pandemic in Belarus (2022), Timeline 

of the COVID-19 pandemic in Brazil, Timeline of the COVID-19 pandemic in Canada, Timeline of the COVID-19 

pandemic in Colombia, Timeline of the COVID-19 pandemic in Croatia, Timeline of the COVID-19 pandemic in Fiji, 

Timeline of the COVID-19 pandemic in Ghana, Timeline of the COVID-19 pandemic in India, Timeline of the COVID-19 

pandemic in India (2021), Timeline of the COVID-19 pandemic in Indonesia, Timeline of the COVID-19 pandemic in 

Indonesia (2020), Timeline of the COVID-19 pandemic in Indonesia (2021), Timeline of the COVID-19 pandemic in 

Indonesia (2022), Timeline of the COVID-19 pandemic in Italy, Timeline of the COVID-19 pandemic in Japan, Timeline of 

the COVID-19 pandemic in Malaysia, Timeline of the COVID-19 pandemic in Malta, Timeline of the COVID-19 pandemic 

in Mexico, Timeline of the COVID-19 pandemic in Nepal, Timeline of the COVID-19 pandemic in New Zealand, Timeline 

of the COVID-19 pandemic in Nigeria, Timeline of the COVID-19 pandemic in Pakistan, Timeline of the COVID-19 

pandemic in Romania, Timeline of the COVID-19 pandemic in Russia, Timeline of the COVID-19 pandemic in Serbia, 

Timeline of the COVID-19 pandemic in Singapore, Timeline of the COVID-19 pandemic in South Africa, Timeline of the 

COVID-19 pandemic in Spain, Timeline of the COVID-19 pandemic in Sweden, Timeline of the COVID-19 pandemic in 

Thailand, Timeline of the COVID-19 pandemic in the Philippines, Timeline of the COVID-19 pandemic in the Republic of 

Ireland, Timeline of the COVID-19 pandemic in the Republic of Ireland (2021), Timeline of the COVID-19 pandemic in the 

Republic of Ireland (2022), Timeline of the COVID-19 pandemic in the United Kingdom, Timeline of the COVID-19 

pandemic in the United States, Timeline of the COVID-19 pandemic in Trinidad and Tobago, Timeline of the COVID-19 

pandemic in Turkey, Timeline of the COVID-19 pandemic in Uruguay, Timeline of the COVID-19 pandemic in Vietnam, 

World Health Organization response to the COVID-19 pandemic in Africa. 

Additional analyses 

Complementing the analysis presented in the 2023 Lancet Countdown report, the figures below 

provide additional evidence on dynamics in pageviews and co-click networks. 
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Figure 137. Connectivity graph of Wikipedia articles on climate change (red) and health (blue). Popularity 

of articles displayed by node size. Edges represent co-visits in the 2022 clickstream data. 
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Figure 138. Connectivity graph of Wikipedia articles on climate change (red) and health (blue), filtered to 

co-click activity between the two domains. Popularity of articles displayed by node size. Edges represent 

co-visits in the 2022 clickstream data. 
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Figure 139. Connectivity graph of Wikipedia articles on climate change. Popularity of articles displayed by 

node size. Edges represent co-visits in the 2022 clickstream data. 

 

Figure 140. Connectivity graph of Wikipedia articles on health. Popularity of articles displayed by node 

size. Edges represent co-visits in the 2022 clickstream data. 
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Figure 141. Co-views of climate change-health article pairs over time, 2018–2022. Dominant pairs labelled. 
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Figure 142. Aggregate monthly co-views of articles related to human health and climate change, 2018–2022 (excluding COVID-19 related articles). 

 



237 

 

Figure 143. Aggregate monthly co-views of articles related to COVID-19 and climate change, 2020–2022 
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Figure 144. Daily page views 2018 to 2022 for Wikipedia articles directly related to the effects of climate change in general and on human health. 
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Figure 145. Aggregate daily page views 2018 to 2021 for all 1,414 selected articles on the English Wikipedia related to health. 

 

Figure 146. Aggregate daily page views 2018 to 2021 for all 610 selected articles on the English Wikipedia related to climate change
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5.3: Scientific Engagement in Health and Climate Change 

Indicator 5.3.1: Scientific Articles on Health and Climate Change 1990-2022  

Indicator authors 

Prof Lea Berrang Ford, Dr Max Callaghan, Prof Jan C. Minx 

Method 

Scientific engagement in health and climate change is central to the Lancet Countdown mission: this 

is to facilitate, support, and track progress on health and climate change.  Scientific evidence is the 

major resource on which such progress rests; it also informs engagement in the key domains of global 

action, including public, governmental and corporate domains. Based on a machine-learning 

methodology developed elsewhere,350 this indicator quantifies engagement in the topic of climate 

change and health by tracking the number of publications over time. A machine-learning approach 

allows for a more granular picture of the research landscape, including developments across major 

domains of research (mitigation, adaptation, impacts), the health impacts covered, locations studied, 

as well as patterns of authorship. 

The objective for this indicator is to systematically track the evidence on the relationship between 

climate change, climate variability, and weather (CCVW) and human health globally. Such a broad 

framing is necessary to adequately represent the relevant scientific work in such a diverse field, where 

not all relevant work involves formal climate change attribution. The evidence map is framed using a 

PICoST approach: population/problem (P), interest (I), context (Co), and scope and time (S/T). The 

scope is global, interest is in empirical evidence on the relationships between climate change, climate 

variability, as well as weather (CCVW) and human health, and coverage includes any scientific article 

or review covered by bibliographic records in OpenAlex. Interest is in any context, i.e., any 

component of the nexus between climate change, climate variability, and weather (CCVW) and 

human health, including impacts on health, and responses to reduce health impacts from climate 

change (e.g., adaptation, mitigation), without prejudice to any climate-health pathway. This search as 

well as inclusion and exclusion criteria are framed within this PICoST framework.  

Relevant documents were those which were indexed in English; provided a clear link to actual, 

projected, or perceived impacts of climate change, responses to reduce the impacts of climate change 

(adaptation), or the mitigation of greenhouse gas emissions; and included substantial focus on a 

perceived, experienced, or observed eligible health-related outcome or health system; and presented 

empirically driven research or a review of such research. 

A support vector machine (SVM) classifier351 was trained using document abstracts to reproduce the 

inclusion/exclusion decisions as well as the impacts/mitigation/adaptation labels. Classifier 

performance was evaluated using 10-fold cross-validation. The inclusion/exclusion classifier achieved 

an accuracy of 87.1% with 80% recall and 76% precision.  

Here the same machine learning model is applied to classify new studies which were not available 

when the original paper350 was produced. Those studies predicted to be irrelevant were discarded. 

Then the multilabel impacts/mitigation/adaptation classifier was applied to those documents which 

were included. Documents can be classified as belonging to one or more of the noted categories. 

Finally, a neural network based “geoparser”352 was applied to titles and abstracts of the texts to extract 

the geographical entities mentioned in the texts. These locations were allocated to countries, and then 

to WHO regions. Country names were also extracted from the institutional affiliations recorded by the 

bibliographic databases. 
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Theme Key concepts String (Scopus) Attributable 

Hits (scopus) 

Climate change  

(contains at least 

one of the following 

climate terms, from 

any category) 

General 

climate change 

terms 

(climat* OR "global warming" OR 

"greenhouse effect*") 
35,052 

Greenhouse 

gasses, 

including 

short-lived 

greenhouse 

gasses, when 

linked to 

emission or 

mitigation. 

Some 

astronomy 

results are 

filtered out. 

(("carbon dioxide" OR co2 OR methane 

OR ch4 OR "nitrous oxide" OR n2o OR 

"nitric oxide" OR "nitrogen dioxide" OR 

nox OR *chlorofluorocarbon* OR *cfc* 

OR refrigerant OR hydrofluorocarbon* 

OR hfc* OR *chlorocarbon* OR "carbon 

tetrachloride" OR ccl4 OR halogen* OR 

ozone OR o3 OR ammonia OR nh3 OR 

"carbon monoxide" OR co OR "volatile 

organic compounds" OR nmvoc OR 

"hydroxyl radical" OR "oh" OR "pm2.5" 

OR aerosol OR "black carbon" OR 

"organic carbon" OR "sulphur dioxide" 

OR "oxidized sulphur" OR "so2" OR 

"sox" OR "sulphuric acid" OR so4* ) W/2 

(emit* OR emission OR releas* OR 

mitigat*) AND NOT(star OR "solar 

system")) 

7,871 

Climate 

variability 

indicators/clim

ate indices 

 

(temperature* OR precipitat* OR rainfall 

OR "heat ind*" OR "extreme-heat event*" 

OR "heat-wave" OR "extreme-cold*" OR 

"cold ind*" OR humidity OR drought* 

OR hydroclim* OR monsoon OR "el 

ni$o" OR enso OR SOI  OR "sea surface 

temperature*" OR sst) 

199,558 

Complex 

climate 

indices, 

including 

extreme 

weather 

events, floods, 

wildfire, and 

coastal 

changes. Some 

paleo-climatic 

events are 

excluded. 

(snowmelt* OR flood* OR storm* OR 

cyclone* OR hurricane* OR typhoon* 

OR "sea-level" OR wildfire* OR "wild-

fire*" OR "forest-fire*" OR ( ( extreme 

W/1 event* ) AND NOT paleo* ) OR 

"coast* erosion" OR "coastal change*" 

OR ( disaster* W/1 ( risk OR manag* OR 

natural))) 22,031 

AND 

 

General health 

terms 

(health* OR well?being OR ill OR illness 

OR disease* OR syndrome* OR infect* 

OR medical*) 49,773 
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Health 

(contains at least 

one of the following 

health terms, from 

any category) 

General health 

outcomes  

(mortality OR daly OR morbidity OR 

injur* OR death* OR hospital* OR {a&e} 

OR emergency OR emergencies OR doctor 

OR gp) 
33,571 

Nutrition, 

including 

obesity and 

undernutrition 

(obes* OR over?weight OR under?weight 

OR hunger OR stunting OR wasting OR 

undernourish* OR undernutrition OR 

anthropometr* OR malnutrition OR 

malnour* OR anemia OR anaemia OR 

"micronutrient*" OR "micro?nutrient*" OR 

diabet*) 

2,239 

Cardio-

vascular terms. 

Some studies 

on Chemical 

Vapour 

Deposition 

(CVD) are 

excluded.  

(hypertension OR "blood pressure" OR 

stroke OR *vascular OR (cvd AND 

NOT(vapour or vapor)) OR "heart disease" 

OR isch?emic OR cardio?vascular OR 

"heart attack*" OR coronary OR chd) 
6,047 

Renal health 

terms  

(ckd OR renal OR cancer OR kidney OR 

lithogenes*) 
4,934 

Effects of 

temperature 

extremes 

((heat W/2  (stress OR fatigue OR burn* 

OR stroke OR exhaustion OR cramp* ) ) 

OR skin OR fever* OR renal* OR rash* 

OR eczema* OR "thermal stress" OR 

hypertherm* OR hypotherm*) 

23,846 

 

Maternal 

health 

outcomes 

(pre?term OR stillbirth OR birth?weight 

OR lbw OR maternal OR pregnan* OR 

gestation* OR *eclampsia OR sepsis OR 

oligohydramnios OR placenta* OR 

haemorrhage OR hemorrhage) 

2,041 

Vector-borne 

diseases 

 (malaria OR dengue* OR mosquito* OR 

chikungunya OR leishmaniasis OR 

encephalit* OR vector-borne OR pathogen 

OR zoonos* OR zika OR "west nile" OR 

onchocerciasis OR filiariasis  OR lyme OR 

tick?borne) 

2,257 

 

Bacterial, 

parasitic and 

viral 

infections, 

including 

waterborne 

(waterborne OR “water borne” OR 

diarrhoea* OR diarrhe*l OR gastro* OR 

enteric OR *bacteria* OR viral OR *virus* 

OR parasit* OR vibrio* OR cholera OR 

protozoa* OR salmonella OR giardia OR 

shigella OR campylobacter OR food?borne 

46,064 
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and foodborne 

diseases  

OR aflatoxin OR poison* OR ciguatera 

OR((snake* OR adder*) W/2 bite*)) 

Respiratory 

outcomes 

(respiratory OR allerg* OR lung* OR 

asthma* OR bronchi* OR pulmonary* OR 

copd OR rhinitis OR wheez*) 3,432 

Mental health 

outcomes 

(mental OR depress* OR *stress* OR 

anxi* OR ptsd OR psycho* OR *trauma* 

OR suicide* OR solastalgi*) 12,616 

Health systems [no additional terms needed]  

Table 84. Search strategy 

Data 

This indicator uses data from bibliographic records in the online scientific database OpenAlex. 

Caveats 

Only English-language search terms are used within this protocol. Any language bias is limited, 

however, given that key international scientific platforms index all papers (including non-English 

papers) with keywords, title, and abstract in English translation. The protocol uses title, keywords, and 

abstract to retrieve and assess the scientific literature, meaning that non-English papers can still be 

retrieved as long as they are indexed in English.  

The methodology provided here enables a quantitative appraisal of the research question. The use of 

machine learning means that there will be some uncertainty as to the number of relevant documents, 

although this uncertainty can be communicated. Further, the quality of the individual studies and the 

specifics of their content will not be assessed by the indicator team.  However, with the outputs all 

published in peer-reviewed journals, there is a de facto check on quality.  For this reason, the indicator 

does not cover grey literature.   

Focusing on peer-reviewed literature will mean some scientific work of interest will be missed, 

particularly from the grey literature. Systematic search of grey literature is challenging, but future 

work could develop web-crawling approaches to find relevant reports and other publications outside 

of the peer reviewed literature.   

Additional information 

There is a large scientific literature on climate and health, comprising approximately 25,000 

publications. 80% of these have been published in the last 10 years. Publications in 2022 remained 

high. The 3,149 papers published in 2022 is about three times higher than the number published in 

2012, although it is 8% lower than the figure for 2021. Publication counts in 2022 were 15% higher 

than in 2020, and the 5-year compound annual growth rate stood at 15%, compared to 18% in 2021, 

and just 8% in 2019. It remains to be seen whether 2022 represents a slowdown, or rather a return to 

previous trends after exceptionally high years in 2020 and 2021. 

Climate and health literature is found in all regions, albeit with substantial variations between regions. 

The region most studied in 2022 was Asia, with 1,095 studies. Northern America and Europe 

followed with 398 and 305 studies respectively. 254 studies addressed locations in Africa, 142 studies 

investigated South and Central America, and 80 and 51 studies addressed Oceania and Small Island 

Developing States (SIDS).  

Climate and health research continues to be dominated by studies on climate impacts, while there is 

comparatively little research on co-benefits and adverse impacts of mitigation and adaptation policies. 

Studies on health impacts fell by the largest amount from 2021 to 2022, both in absolute terms from 
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2,411 papers to 2,182 and in relative terms (9,4%). Studies on adaptation fell by 7.1% from 154 to 

143 papers, while studies on mitigation fell 6.2% from 192 to 180 papers (Figure 147). 

  

Figure 147. a) Growth in publications around health and climate change, and b) locations of studies 
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Indicator 5.3.2: Scientific Engagement on the Health Impacts of Climate Change  

Attribution Studies of Extreme Events and Their Health Outcomes   

Indicator authors 

Prof Lea Berrang Ford, Dr Max Callaghan, Prof Jan C. Minx 

Methods  

Extreme climate events from attribution studies were categorized according to the relative impact of 

anthropogenic climate change on their likelihood and/or extremity, and the corresponding mortality and 

morbidity impacts. Detection and attribution is widely used within climate science and other fields, and 

increasingly being used to within public health as a means of characterising and quantifying current health 

impacts and future risks.353 

Each event is categorically considered a) more likely or severe due to climate change, b) less likely or severe 

due to climate change or c) the impact of climate change on likelihood or severity of event is neutral or unclear. 

Events are also categorised by the type of event (for example: heavy precipitation and flood events, wildfires, 

extreme heat events, storms, tornadoes and cyclones, and drought and low precipitation events) and the region 

most affected. The studies were separated by LCD region and HDI levels to consider the differing impacts of 

these extreme events and the number of studies by region. A content analysis was also conducted to determine 

the proportion of attribution studies that made direct reference to health impacts. 

Data  

Attribution data included for analysis was sourced from studies published by major attribution research groups 

and their associated publications, namely: World Weather Attribution and American Meteorological Society. 

Although these groups captured the majority of detection and attribution studies, an additional literature search 

was conducted on online databases Scopus and Web of Science. Compliance with the IPCC standards for 

detection and attribution research was considered an inclusion criterion.354  

Correlation of attributable events was made, where possible, with the Centre for Research on the Epidemiology 

of Disasters (CRED) Emergency Events Database (EM-DAT), from which morbidity and mortality data was 

preferentially sourced. Further health impact data was drawn from attribution studies where available, as well as 

through literature searches on online databases Scopus and Web of Science. In a few instances, health impact 

data was also sourced from non-academic sources including health system datasets and press releases from 

healthcare authorities.  

Caveats  

This indicator is limited by the number of published attribution studies and their chosen focus. As past detection 

and attribution studies have predominantly focused on extreme events occurring in more developed region175, 

the paucity of data relating to the health impacts of attributable events in less developed regions is recognised.  

Although mortality data are discrete, numerical data that are easily aggregable and comparable across events, 

measures of morbidity are multiple and varied, which can constrain data analysis, thereby limiting 

interpretations. Additionally, health impacts attributed to extreme climate events systematically underestimate 

true health burdens due to data availability and methodological limitations.175,355 

 

Future form of the indicator 

The proposed indicator will consolidate detection and attribution as an effective and reliable means of 

quantifying the effects of climate change on human health. It can eventually be expanded to work directly with 

groups that conduct detection and attribution research to more directly attribute health burdens to climate 

change. There will be some work to aim towards this within the next two years.  

Additionally, the contribution of human induced climate change on each event can be presented as a percentage 

relative contribution on its severity and/or the likelihood of it occurring, such as expressed in the form of a 
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probability ratio. Although the analysis of this data is currently limited by variable statistical expression of these 

relationships and large confidence intervals, it may represent a future opportunity for additional quantitative 

analysis. 

Additional analysis 

 

Figure 148. Attribution of extreme events published 2022-2023: Impact of climate change on the likelihood 

and/or severity of extreme event by event type. Direct mortality and injuries for all events totalled 12,436 

and 16,524, respectively.  
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Figure 149. Detection and attribution of the influence of climate change on extreme events, by event type 

Scientific studies on the health impacts of climate change 

Methods 

There are multiple pathways in which climate and health outcomes are interlinked. A large and 

growing literature maps out the ways climate can impact human health, without necessarily isolating 

the role of human influence on the climate in driving the impacts. This indicator identifies this 

literature, classifying studies according to the climate drivers and health impacts studied, and locating 

where such impacts are studied. Using observational data and climate models, it identifies the subset 

of the literature which finds health impacts driven by climate variables, that are located in areas where 

changes in those variables can be attributed to human influence on the climate. These studies are 

referred to here as partially attributable impact studies. 

Scientific studies form the basis of our understanding of how climate change and health are linked. 

Indicator 5.3 already identifies and tracks studies which provide evidence on climate and health. 

However, for those studies which address the impacts of climate on health, which form the majority 

of the evidence base, the studies themselves do not necessarily address the full chain of links between 

anthropogenic climate change, changes in a climate variable, and health impacts. Many focus only on 

the links between the latter two concepts. A novel approach is followed here,356 to link studies on 

climate impacts with data from climate models and the observational record, in order to shed light on 

attribution across the whole chain from human influence on the climate, to the health impacts of 

climate change. The result is a new cross-working-group indicator that characterizes the available 

evidence from scientific studies on attributable climate impacts on human health. 

The indicator starts from data from indicator 5.3, which identifies the relevant scientific literature on 

climate and health. Machine-learning classifiers from natural language processing were trained and 

applied to identify and classify a subset of documents with regard to the climate driver, the specific 

type of health impact, and the type of evidence provided as well as the time and location of the 

impact. By combining this geo-referenced set of documented climate-related health impacts with grid-

cell-level human-attributable changes in temperature and precipitation, it is possible to provide a 
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comprehensive evidence base on attributable health impacts, which is the basis for the indicator 

calculations. 

The open access database Open Alex is searched for documents related to climate and health using a 

query developed in Berrang-Ford et al.350 Two thousand examples were screened, including where 

documents mentioned a climate variable or extreme event AND a health impact or exposure, as 

defined in the Lancet Countdown’s model of climate and health linkages. Reading the abstracts, the 

climate variable, the extreme event, the health impact, the exposure, and the attribution type were 

coded. Each document was double coded, with all inconsistencies resolved manually in discussion 

with a third coder if necessary.  

A machine learning classifier was subsequently trained to reproduce the screening and coding 

decisions from the initial training sample. For each task, hyperparameters were optimized using tree-

structured Parzen estimator357 and nested cross-validation, testing 3 different transformer-based 

models. The results of the optimization process are reported for each model and each task below. 

 

 

Table 85. F1 scores (the mean of precision and recall) for each classifier and task 

Trends in temperature and precipitation in grid cells are attributed following the procedure from 

Knutson et al. 358 and Knutson and Zeng.359 As in Callaghan et al.,356 this indicator shows where 

impact studies coincide geographically with attributable trends in the climate driver investigated. 

Caveats 

It is important to acknowledge that although English is the lingua franca in scientific literature, 

searching for studies in English may result in additional gaps in coverage, which it is hoped can be 

addressed with multilingual searches in future versions of the indicator. 

The method here cannot fully attribute the health outcomes identified in each study to human 

influence on the climate. Rather, it shows where the health outcomes of changes in climate variables 

coincide geographically with changes in those variables that can be attributed to human influence. 

Additional Information 

There is a large literature that investigates the impacts of climate on health, although the role of 

human-induced climate change is not always addressed in each study. 31,254 publications on the 

impacts of climate on health were identified, of which 21,509 investigate how either temperature or 

precipitation have influenced health outcomes (68.8%). By comparing observed trends in temperature 

and precipitation with model-based counterfactuals exploring a world without anthropogenic forcing 

and with climate model runs that model the effects of anthropogenic forcing,358,359 the indicator 

demonstrates where trends in temperature and precipitation can be attributed to human influence on 

the climate. 16,708 of the studies showing impacts driven by changes in temperature or precipitation 



249 

 

cover geographies where at least 50% of the area has been exposed to trends in the respective climate 

variable which can be attributed to human influence. 

There is a large geographic variability in the number of studies, which is not proportional to the 

number of people exposed to trends in climate variables that can be attributed to human influence. For 

instance, there are 22 million people in Oceania living in 2.5 degree grid cells where trends in either 

temperature or precipitation can be attributed to human influence on the climate, and 1,139 climate 

and health studies focussing on a location in which the climate variable driving the impact can be 

attributed to human influence for over 50% of the area. That is a ratio of 49.8 studies per million 

exposed people. In North America, Europe, and South America the ratios of studies per million 

people stand at 13.4, 6.6, and 4.0 respectively. Asia has 7,481 studies for its 4 billion inhabitants 

exposed to attributable trends in temperature or precipitation, a ratio of 1.8 per million, while Africa 

displays a ratio of 2.0 per million. 

The disparity highlights the unequal access to resources across the world and shows that there are 

many areas exposed to climate change and vulnerable to its effects, of which there is little knowledge 

in the scientific literature.  

 

 

 

 

 

Figure 150. The number of people in each Lancet Countdown region exposed to trends in temperature or 

precipitation that can be attributed to human influence on the climate, compared to the number of studies 

exploring health impacts of climate drivers where those drivers display attributable trends.  
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Figure 151. The number of papers exploring the links between temperature and precipitation and health 

outcomes, where the study focuses on area where trends in the relevant variable can be attributed to human 

influence on the climate. Note that single studies may investigate multiple drivers or health impacts. 
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Figure 152. The number of papers addressing links between climate drivers and health impacts. 

 

Figure 153.Attributable trends in temperature (top), precipitation (middle), and the number of climate 

health impact studies weighted per cell (bottom) 
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5.4: Political Engagement in Health and Climate Change 

5.4.1. Government Engagement 

Indicator authors 

Dr Niheer Dasandi, Prof Slava Jankin, Dr Pete Lampard 

Engagement in health and climate change in the United Nations General Assembly 

Methods 

To produce the measure of high-level political engagement with climate change and health in the UN 

General Assembly, a new dataset of UN General Debate statements was used, which is discussed 

below. The approach to using UNGD statements to produce the indicators here is based on the 

application of natural language processing to the corpus of UNGD statements. References to key 

search terms linked to (a) health, and (b) climate change are identified: 

Health: malaria, diarrhoea, infection, disease, diseases, sars, measles, pneumonia, 

epidemic, epidemics, pandemic, pandemics, epidemiology, healthcare, health, mortality, 

morbidity, nutrition, illness, illnesses, ncd, ncds, air pollution, nutrition, malnutrition, 

malnourishment, mental disorder, mental disorders, stunting. 

Climate change: climate change, changing climate, climate emergency, climate action, 

climate crisis, climate decay, global warming , green house, temperature, extreme 

weather, global environmental change, climate variability, greenhouse, greenhouse-gas, 

low carbon, ghge, ghges, renewable energy, carbon emission, carbon emissions, carbon 

dioxide, carbon-dioxide , co2 emission, co2 emissions, climate pollutant, climate 

pollutants, decarbonization, decarbonisation, carbon neutral, carbon-neutral, carbon 

neutrality, climate neutrality, net-zero, net zero. 

These key terms have been updated to reflect the changing terminology used to discuss climate 

change. In order to produce an indicator of engagement with the intersection of climate change and 

health, this approach focused on whether any of the climate change related terms appeared 

immediately before or after any health terms in the GD statements. This was based on a search of the 

25 words before and after a reference to a health-related term. The choice of 25-word window context 

corresponds to approximately half a paragraph of text. Given that UNGD statements are highly 

structured and methodically developed by governments over prolonged periods of time, it is assumed 

that half a paragraph of text around public health terms captures a sufficiently narrow context. The 

number of climate change term references were counted in these contexts to produce the measure of 

engagement with the link between health and climate change. A robustness analysis – varying the size 

of the context (5, 10, and 50 words) – was also undertaken. This substantively produced the same 

trends over time. A sample of the references produced by the search were also examined as an 

additional check to ensure that the references identified reflect engagement with the health impacts of 

climate change. 

Data 

This indicator draws on a new and updated dataset of GD statements: the United Nations General 

Debate corpus, in which the annual GD statements have been pre-processed and prepared for the 

application of natural language processing to the official English versions of the statements.6 The dataset 

contains all the country speeches made in the UN General Debate between 1970 and 2021. Table 86 

presents summary of the data by year: 
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Year 

General 

Debate 

statements 

Total 

sentences 

Total 

words 
  Year 

General 

Debate 

statements 

Total 

sentences 

Total 

words 

1970 70 11854 303791   1997 176 17701 514492 

1971 116 19901 508506   1998 181 18883 514836 

1972 125 21201 540994   1999 181 18529 531306 

1973 120 21450 536413   2000 178 16259 464312 

1974 129 22041 568739   2001 189 14748 414683 

1975 126 21365 534375   2002 188 13977 380481 

1976 134 23799 599949   2003 189 14716 399397 

1977 140 24799 606549   2004 192 14899 405290 

1978 141 25236 626163   2005 185 13012 353065 

1979 144 26462 654000   2006 193 14646 390476 

1980 149 27191 659225   2007 191 14586 387883 

1981 145 26063 633579   2008 192 14294 384881 

1982 147 23435 638691   2009 193 16029 423395 

1983 149 26803 643068   2010 189 14439 391954 

1984 150 27928 662654   2011 194 16293 429974 

1985 137 19258 592666   2012 195 16837 444519 

1986 149 19030 577525   2013 193 16400 440898 

1987 152 18336 563132   2014 194 15859 421947 

1988 154 18595 569493   2015 193 16129 436378 

1989 153 19440 574379   2016 194 15990 420155 

1990 156 17885 522197   2017 196 16806 439624 

1991 162 18552 538351   2018 196 16980 455205 

1992 167 18597 543138   2019 195 17526 466114 

1993 175 20165 587448   2020 193 15165 396548 

1994 178 19944 580530   2021 194 16675 442530 

1995 172 17870 536741   2022 193 17240 448117 

1996 181 18046 522699           

Table 86. Summary information for UN General Debate Corpus. 

The data was pre-processed for analysis by removing punctuation, symbols, numbers, stop words, and 

URLs. In addition, all tokens were normalised (lower-cased). All pre-processing and analysis was 

carried out in R using the “quanteda” package.360  

Caveat 
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The search for climate change terms in the context of public health references is a proxy for the semantic 

linkage between the two sets of terms in GD statements. This approach produces a scalable and 

reproducible measure with a high degree of reliability that does not involve human judgement or 

subjective biases. However, there may be examples of governments referring to climate change and 

health but not the direct linkages between the two, which are included in the count; and there may be 

examples of governments discussing the health impacts of climate change in their UNGD statements, 

which are not included in the measure because the distance between the mention of the climate change 

term and the health term exceeds 25 words. Based on an analysing a sample of the speeches and 

references, such cases are relatively rare and do not have a significant bearing on the indicator or the 

trends uncovered. 

It is also worth noting that the analysis here is based on a narrow range of search terms, which excludes 

reference to many of indirect links between climate change and health. A number of GD statements in 

this time period refer to such indirect connections, such as the effects of climate change on water and 

agriculture – however, these are not included here. Therefore, the results present a somewhat 

conservative estimate of high-level political engagement with the intersection of climate change and 

health. Future work in this area will consider engagement with these indirect links. 

Future Form of Indicator 

In the future, it is planned that this indicator will look more closely at the references to indirect links 

between climate change and health.  For example, this would question the main ways in which 

governments view climate change impacting on health and whether this changes over time based on 

awareness of the multiple ways in which climate change and health are connected. Some of the 

references to the indirect links between climate change and health made in UNGD statements are 

highlighted in the main report. 

Additional Information 

Figure 154 shows the proportion of countries that made references to climate change, health and the 

intersection of both in the UNGD between 1970 and 2022. Figure 155 shows the total number of 

references to health, climate change, and the intersection of the two between 1970 and 2022. Figure 

156 presents the total number of references to the intersection in UNGD statements between 1970 and 

2022. Figure 157 shows the proportion of countries that engage with the intersection of climate 

change and health between 1970 and 2022. The figures show the substantial increase in engagement 

with the health dimensions of climate change that occurred in 2020 and 2021, with a slight decline in 

2022. In 2019 there were 109 separate references – which was significantly higher than in previous 

years – and in 2021 this more than tripled to 346 individual references to the intersection of climate 

change and health. In 2022, there is a decline in references to 245 individual references to the climate 

change-health intersection.  
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Figure 154:  Proportion of countries referring to climate change, health, and the intersection between the 

two, UNGD, 1970-2022. 
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Figure 155. Total number of references to health, climate change, and intersection, 1970–2022 

 

Figure 156. Total number of references to intersection, 1970–2022 
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Figure 157. Proportion of countries referring to the intersection of health and climate, 1970–2022 

There is growing awareness of the gendered impacts of climate change and health. This indicator 

considers the extent to which references to the health dimensions of climate change in countries UN 

General Debate statements engage with gender issues. This is undertaken by further examining the 

references to the intersection of climate change and health. Once all of the references to this 

intersection in UNGD statements for 1970–2022 were identified, additional search terms related to 

gender were used to identify which of the intersection references also engaged with gender issues. 

The gender-related search terms used were as follows: women, women’s, maternal, inequality, 

inequalities, gender, empowerment, sex, sexual, violence, violent, girls, reproduction, reproductive. 

Hence, the analysis considers whether the 25 words of text identified in the primary search (for 

climate change and health terms) includes a reference to at least one of these gender-related 

keywords. Figure 158 shows that only 2% of all references to the intersection of climate change and 

health also include a mention of gender. The figure shows that this is lower than in previous years, 

with the 2014 seeing 26% of all climate change-health references including a gender mention. 

 

Figure 158. Proportion of references to the intersection of health and climate change that include a 

reference to gender, 1970–2022 

Figure 159 below presents the proportion of countries that engage with the intersection of climate 

change and health by WHO region. There has been a significant increase in engagement with health 

and climate change across all regions in the past three years. In 2022, there is a slight decline across 

most regions compared to 2021, though at least 35% of countries in all the regions refer to the health 

dimensions of climate change in their 2022 UNGD statements. As in previous years there is especially 

high engagement from countries in the Western Pacific region, with 78% of countries referring to the 

intersection of climate change and health. The analysis finds that all countries in the South-East Asia 

and North American region refer to the intersection of health and climate change, though it is worth 

noting that these two regions consist of a small number of countries (9 and 2 respectively). It is also 

worth noting that the relatively higher level of political engagement by countries in the Western 
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Pacific is especially driven by the Small Island Development States (SIDS) in this region. The lowest 

engagement is by countries in the Eastern Mediterranean regions with 37% of countries in this region 

referring to the intersection of climate change and health. 

 

Figure 159. Proportion of countries referring to intersection of health and climate change by WHO region, 

1970–2022 

Figure 160, below, presents the total number of references to the climate change-health link between 

1970 and 2022 by WHO region. The figure shows that the highest number of references to the 

intersection of climate change and health come from four regions: Africa, Europe, Latin America and 

the Caribbean, and the Western Pacific. In general, the figure suggests that there is lower engagement 

among countries in the Eastern Mediterranean, North America, and South-East Asia.    
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Figure 160. Total number of references to intersection by WHO region, 1970–2022 

In addition to grouping countries by WHO region, countries are also considered by continental regions. 

This is provided in Figure 161 and Figure 162. As noted in previous years’ reports, the SIDS have 

driven much of the engagement with the health impacts of climate change, as well as climate change 

more generally, in the UN General Assembly. As such, included is a separate SIDS grouping.  

Figure 161 shows the proportion of countries that engage with the intersection of climate change and 

health based on these country groupings. Figure 162 shows the total number of references to the climate 

change-health intersection according to these groupings. Both figures demonstrate the high level of 

engagement with the climate change-health linkages by SIDS. It is worth noting that some of the regions 

(e.g., Northern America and Oceania) contain very few countries, and hence they deviate in engagement 

between 0 and 100% in different years.  
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Figure 161. Proportion of countries referring to intersection of health and climate change by continental 

region, 1970–2022 
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Figure 162. Total number of references to intersection by continental region, 1970–2022 

Government engagement with the health dimensions of climate according to countries’ Human 

Development Index (HDI) categories is also considered here. Figure 163 shows the proportion of 

countries engaging with the intersection of climate change and health by HDI category, and Figure 

164 shows the total number of references by countries’ HDI categories. Both figures show the 

significant increase in engagement across different HDI groupings since 2019 with a slight drop in 

2022. The very high HDI category has the highest engagement with the intersection of health and 

climate change in 2022. 
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Figure 163. Proportion of countries referring to intersection of health and climate change by HDI 

categories, 1970–2022 

 

Figure 164. Total number of references to intersection by HDI categories, 1970–2022 

Figure 165 below presents a world map, which shows the countries that refer to the intersection of 

climate change and health in their 2022 UNGD statements, and the number of individual references 

they make. The map shows that half of all countries mentioned the intersection of health and climate 

change in their 2022 address. The map also shows that despite the higher engagement, there is still 

evidence of a divide between high-income countries on the one side, and low- and middle income 

countries on the other side, though this divide is much smaller than in previous years. The latter (low- 

and middle-income countries) tend to engage more with climate change and health, particularly when 

the SIDS are included. Due to their size, the SIDS do not show up on the map. As previously noted, 

the SIDS tend to be highly represented among nations engaging with the health-climate change links.  

Figure 166 and Figure 167 present world maps, which show the countries that refer to public health 

and climate change respectively in their 2022 UNGD statements, as well as indicating the number of 

references made by each country. The figures demonstrate that there is considerable engagement with 

the issues of climate change and health separately. In 2022, 91% of countries referred to climate 

change and 92% of countries mentioned health in their UNGD statements, as can be seen in Figure 

166 and Figure 167. Figure 166 and Figure 167 show that as well as a much larger share of countries 

around the world discussing climate change and health in their GD statements compared to those 

discussing the intersection, there is also much deeper engagement with these two areas individually, 

in that countries tend to make a number of references to climate change and health in their GD 

statements. 
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Figure 165. World map showing references to intersection of climate change and health, 2022 
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Figure 166. World map showing references to public health, 2022 

 

Figure 167. World map showing references to climate change, 2022 
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Engagement in health and climate change in the Nationally Determined Contributions 

Methods 

Under the Paris Agreement, Nationally Determined Contributions (NDCs) for each Party to the 

Agreement are communicated through the NDC registry. As a measure of engagement across climate 

change and health, and in particular of governments’ appreciation of the health risks of climate 

change, all available first, second, third, and fourth NDCs (as of March 01, 2023) were analysed with 

respect to their inclusion of health-related terms. Here any update or entirely new NDC is regarded as 

a separate NDC. Analysis of first and second, and for some third and fourth, NDCs allows some 

indication of changes in climate-related health concerns over time. 

This iteration of the report aligns with a change in the UNFCCC online archive of NDCs. Whereas in 

the last report NDCs were split between pre- and post-2020 NDCs, for this year’s report these are 

categorised by the specific iteration per country. This means that some nations have four NDCs to 

their name while others may only have one. (More information on the specific countries and their 

number of iterations can be found below). 

All NDCs were downloaded from the NDC registry. These were organised by iteration as per the 

UNFCCC registry spreadsheet (https://unfccc.int/NDCREG). From here the NDCs were uploaded 

into R and tokenised into sentence form using the Tabulizer package 361. This enabled all NDCs to be 

broken up into dataframes of sentences, which could then be searched for health and climate change 

terms. By aggregating further, different resolutions with frequency of health-related terms, from 

country level to Lancet Countdown grouping, HDI classification, and WHO Region, could be 

achieved. 

The two categories used in analysis (health-related terms and climate change-related terms) were 

developed iteratively (see Table 87 below). Other terms frequently used alongside health terms were 

also counted, again, developed through exploring the data or based on previous research around health 

and climate change (see Table 88 below). 

category keywords 

health health, illness 

death fatal*, mortal*, loss_of_life, death* 

wellbeing wellbeing 

disease infectious_disease*, disease*, morbid*, syndrome* 

nutrition malnutrition, starvation, undernutrition, nutrition 

infectious 

disease 

malaria, chikungunya, dengue, fever*, ebola, zika, leishmaniasis, leptospirosis, 

epidemic*, typhoid, vector*, aedes, mosquito*, pandemic* 

psychological emotion*, psychology*, mental_health 

medical 
medic*, hospital, hospitali*ation, patients, emergency_department, A&E, 

diagnos*, clinical 

heat heat_stress, heat_disorder* 

injury injur* 

covid covid, corona*, sars_cov_II, sars_cov_2 

https://unfccc.int/NDCREG
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Table 87. Health keywords. 

category keywords 

adaptation adapt* 

mitigation mitig* 

co-

benefits 

co_benefit*, win_win, secondary 

benefit* 

trade off trade_off* 

gender 
gender*, wom*n*, reproduct*, 

maternal 

sector sector*, infrastructure* 

knowledge 
university*, train*, educat*, 

research* 

rights 
human_right*, *equalit*, *equit*, 

rights 

one health one_health, healthy_island 

Table 88. Context keywords. 

 

Data 

Table 89 shows the number of NDCs available by iteration. Figure 168 demonstrates the proportion of 

these NDCs by Lancet Countdown grouping. Box 2 demonstrates how many iterations each UN 

member state has uploaded to the UNFCCC website. Several NDCs were in either French or Spanish 

and were therefore translated using Google Translate. While each document covered broadly the same 

material (all had mitigation strategies, most had adaptation sections, coverage of national 

circumstances, and an account of fairness and ambition within the NDC), most were different in 

presentation, making extraction of text difficult in some instances. For example, some NDCs were 

screenshots of pages, which meant Adobe DC was used for its Optical Character Recognition 

capacity, converting image into text. 

 

 
count 

First 191 

Second 163 

Third 28 

Fourth 2 
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Table 89. NDC count per iteration. 

 

 

 

Figure 168. Proportion of NDCs per iteration by Lancet Countdown grouping. 
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Box 2. NDC count per member state. 

Caveats 

There may be cases within the NDCs where the discussion of health and climate change is split over 

two or more sentences, and where key identifiers for the health-related category are only implied.  

Future form of indicator 

This indicator uses the data from all available first NDCs held on the UNFCCC registry 

(https://www4.unfccc.int/sites/NDCStaging/Pages/All.aspx) as of March 1st 2023. Future reports will 

report on NDCs added after this date, where relevant, either as a full indicator on as a smaller section 

in the report. 

Future research could also provide a full document analysis looking at the role of health in the NDCs, 

but this would require further resourcing. 

Additional analysis 

Given how few fourth NDCs there are, additional analyses will be limited to the first, second and third 

NDCs. 

Types of health keywords present 

Afghanistan: 1,  Albania: 2,  Algeria: 1,  Andorra: 3,  Angola: 2,  Antigua and Barbuda: 2,  

Argentina: 3,  Armenia: 2,  Australia: 4,  Austria: 2,  Azerbaijan: 1,  Bahamas: 2,  Bahrain: 2,  

Bangladesh: 3,  Barbados: 2,  Belarus: 2,  Belgium: 2,  Belize: 2,  Benin: 2,  Bhutan: 2,  

Bolivarian Republic of Venezuela: 1,  Bolivia (Plurinational State of): 2,  Bosnia and 

Herzegovina: 2,  Botswana: 1,  Brazil: 3,  Brunei Darussalam: 1,  Bulgaria: 2,  Burkina Faso: 2,  

Burundi: 2,  Cabo Verde: 2,  Cambodia: 12,  Cameroon: 2,  Canada: 3,  Central African 

Republic: 2,  Chad: 2,  Chile: 2,  China: 2,  Colombia: 2,  Comoros: 2,  Congo: 2,  Cook 

Islands: 1,  Costa Rica: 3,  Côte d'Ivoire: 2,  Croatia: 2,  Cuba: 2,  Cyprus: 2,  Czechia: 2,  

Democratic People's Republic of Korea: 2,  Democratic Republic of the Congo: 2,  Denmark: 2,  

Djibouti: 1,  Dominica: 2,  Dominican Republic: 2,  Ecuador: 1,  Egypt: 2,  El Salvador: 3,  

Equatorial Guinea: 2,  Eritrea: 1,  Estonia: 2,  Eswatini: 2,  Ethiopia: 2,  Fiji: 2,  Finland: 2,  

France: 2,  Gabon: 2,  Gambia: 2,  Georgia: 2,  Germany: 2,  Ghana: 2,  Greece: 2,  Grenada: 2,  

Guatemala: 3,  Guinea: 2,  Guinea-Bissau: 2,  Guyana: 1,  Haiti: 2,  Honduras: 2,  Hungary: 2,  

Iceland: 2,  India: 2,  Indonesia: 3,  Iraq: 1,  Ireland: 2,  Israel: 2,  Italy: 2,  Jamaica: 2,  Japan: 4,  

Jordan: 2,  Kazakhstan: 1,  Kenya: 2,  Kiribati: 1,  Kuwait: 2,  Kyrgyzstan: 2,  Lao People's 

Democratic Republic: 2,  Latvia: 2,  Lebanon: 2,  Lesotho: 2,  Liberia: 2,  Liechtenstein: 1,  

Lithuania: 2,  Luxembourg: 2,  Madagascar: 1,  Malawi: 2,  Malaysia: 2,  Maldives: 2,  Mali: 1,  

Malta: 2,  Marshall Islands: 3,  Mauritania: 2,  Mauritius: 2,  Mexico: 3,  Micronesia (Federated 

States of): 2,  Monaco: 2,  Mongolia: 2,  Montenegro: 2,  Morocco: 2,  Mozambique: 2,  

Myanmar: 2,  Namibia: 2,  Nauru: 2,  Nepal: 2,  Netherlands: 2,  New Zealand: 2,  Nicaragua: 2,  

Niger: 2,  Nigeria: 3,  Niue: 1,  North Macedonia: 2,  Norway: 3,  Occupied Palestinian 

territory: 1,  Oman: 12,  Pakistan: 3,  Palau: 1,  Panama: 2,  Papua New Guinea: 2,  Paraguay: 2,  

Peru: 2,  Philippines: 1,  Poland: 2,  Portugal: 2,  Qatar: 2,  Republic of Korea: 3,  Republic of 

Moldova: 2,  Romania: 2,  Russian Federation: 1,  Rwanda: 2,  Saint Kitts and Nevis: 2,  Saint 

Lucia: 2,  Saint Vincent and the Grenadines: 1,  Samoa: 2,  San Marino: 1,  Sao Tome and 

Principe: 2,  Saudi Arabia: 2,  Senegal: 1,  Serbia: 2,  Seychelles: 2,  Sierra Leone: 2,  

Singapore: 3,  Slovakia: 2,  Slovenia: 2,  Solomon Islands: 2,  Somalia: 2,  South Africa: 2,  

South Sudan: 2,  Spain: 2,  Sri Lanka: 3,  State of Palestine: 2,  Sudan: 3,  Suriname: 2,  

Sweden: 2,  Switzerland: 3,  Syrian Arab Republic: 1,  Tajikistan: 2,  Thailand: 3,  Timor-Leste: 

2,  Togo: 2,  Tonga: 2,  Trinidad and Tobago: 1,  Tunisia: 2,  Türkiye: 1,  Turkmenistan: 1,  

Tuvalu: 1,  Uganda: 3,  Ukraine: 2,  United Arab Emirates: 3,  United Kingdom: 2,  United 

Republic of Tanzania: 2,  United States of America: 2,  Uruguay: 2,  Uzbekistan: 2,  Vanuatu: 

3,  Venezuela (Bolivarian Republic of): 2,  Viet Nam: 3,  Zambia: 3,  Zimbabwe: 2 

https://www4.unfccc.int/sites/NDCStaging/Pages/All.aspx
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Table 90 shows how different health keywords are distributed across the iterations of NDCs. It 

demonstrates that health mentions as a whole increase from the first NDCs (73%) to the second 

(94%). Third NDCs show a reduction once more in health mentions (79%).  

The second and third iteration demonstrated a higher proportion of NDCs mentioning keywords 

relating to deaths, nutrition, infectious diseases, psychological or emotional health, and heat-related 

issues. Of these, the biggest increase appears to be in references to infectious disease keywords (from 

28% to 80%).  

 

keywords First (n=191) Second (n=163) Third (n=28) 

All health 73% 94% 79% 

health 70% 92% 75% 

deaths 18% 36% 36% 

wellbeing 21% 39% 50% 

disease 40% 56% 36% 

nutrition 20% 40% 36% 

infectious 28% 80% 64% 

psychological 4% 19% 29% 

medical 17% 43% 39% 

heat 2% 13% 14% 

injury 5% 9% 11% 

covid 1% 74% 64% 

 

Table 90. Health related terms and their distribution across NDC iterations. Note: COVID19-related terms 

are not included in the “all health” terms category. 

Lancet Countdown grouping 

By Lancet Countdown grouping (see Figure 169), the South and Central American region and the 

African region demonstrate the highest proportion of first NDCs making reference to health in some 

way (100% and 98% respectively). This is followed by the Asian region (88%) and the SIDS nations 
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(84%). The European (14%), Oceanic (1 out of 3, 33%), and North American (1 out of 2, 50%) 

regions have the lowest proportion of NDCs mentioning health in the first round. Each of these, 

besides the Oceanic region, shows significant improvement in the second round, with the North 

American region, South and Central American region, and SIDS nations all at 100% of NDCs 

mentioning health, and the African region once again with 98%. 92% of NDCs representing the 

European region – a dramatic increase, up from 14% – mention a health-related term. 100% of North 

American NDCs also mention health in the second round, though this is only made up of two NDCs. 

While one out of three Oceanic first NDCs mentioned health, neither of the two second round NDCs 

mention health in any way. 

 

Figure 169. Proportion of NDCs per Lancet Countdown grouping mentioning a health keyword across 

iterations. 

The Figures below also show the proportion of NDCs from each of these groupings, in each iteration, 

using keywords from particular health keyword categories.  
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Figure 170. Proportion of NDCs in Africa Lancet Countdown grouping using different health terms, across 

iterations (first NDC n=47, second NDC n=41, third NDC n=4, fourth NDC n=0) 
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Figure 171. Proportion of NDCs in Asia Lancet Countdown grouping using different health terms, across 

iterations (first NDC n=42, second NDC n=33, third NDC n=9, fourth NDC n=1) 

 

Figure 172. Proportion of NDCs in Europe Lancet Countdown grouping using different health terms, 

across iterations (first NDC n=43, second NDC n=38, third NDC n=4, fourth NDC n=0) 
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Figure 173. Proportion of NDCs in Oceania Lancet Countdown grouping using different health terms, 

across iterations (first NDC n=3, second NDC n=2, third NDC n=1, fourth NDC n=1) 
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Figure 174. Proportion of NDCs in North American Lancet Countdown grouping using different health 

terms, across iterations (first NDC n=2, second NDC n=2, third NDC n=1, fourth NDC n=0) 

 

 

Figure 175. Proportion of NDCs in South and Central America Lancet Countdown grouping using different 

health terms, across iterations (first NDC n=16, second NDC n=16, third NDC n=6, fourth NDC n=0) 
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Figure 176. Proportion of NDCs in Small Island Developing States Lancet Countdown grouping using 

different health terms, across iterations (first NDC n=38, second NDC n=31, third NDC n=3, fourth NDC 

n=0) 

 

HDI Classification 

Figure 177 demonstrates the proportion of NDCs mentioning health by HDI group. Those in the very 

high HDI group consistently mention health the least across rounds (with 38%, 87%, and 69% 

respectively). The high HDI group has the second lowest proportion of NDCs mentioning health in 

the first round (83%), but then 100% of NDCs mention health across the second and third round of 

NDCs. The Medium HDI group mentions health in 83% of its first round NDCs, 100% of its second 

round NDCs, and 83% of its third round NDCs. Finally, the Low HDI group starts off, in the first 

round of NDCs, with the highest proportion of NDCs mentioning health, but drops off in the second 

(92%) and third round (75%). 
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Figure 177. Proportion of NDCs per HDI classification mentioning a health keyword across iterations. 

Contextual keywords 

The analysis makes it possible to show the proportion of mentions that co-occur in sentences with 

contextual keywords, around adaptation, mitigation, co-benefits, and other areas. As is shown in 

Table 91 cross all three rounds of NDC, health mentions tend to co-occur with adaptation (between 

26% and 28% of all mentions) and sector-based keywords (between 39% and 43%), not that these are 

mutually exclusive (e.g. “Adaptation is required in the healthcare and industrial sector”). Co-

occurrences with mitigation keywords increase in each round, though remain between 7.8% and 11%. 

References to co-benefits, though low in number, are higher in the second and third round (from 1.9% 

to 2.6% and 2.4% of all NDCs). Keywords relating to gender appear to co-occur with health mentions 

far more in the second and third round of NDCs (12.5% and 9.3%, respectively, up from 6%).  

 

NDC adaptation mitigation 

co-

benefits 

trade-

off gender sector knowledge rights 

First 27.7% 7.8% 1.9% 0% 6% 43.4% 16.8% 2.8% 

Second 25.6% 9% 2.6% 0% 12.5% 40.1% 12.5% 5.2% 

Third 26.8% 11% 2.4% 0% 9.3% 38.7% 12.3% 5% 

Table 91. Contextual keyword co-occurrences across all NDCs, in all iterations  
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5.4.2: Engagement by International Organisations 

Indicator authors 

Dr Olga Gasparyan, Dr Pete Lampard, Prof Cathryn Tonne 

Methods 

While the direct health benefits of climate change mitigation are often longer-term and diffuse, health 

co-benefits have been shown to provide strong, tangible local impacts, especially for developing 

countries, in relatively short time frames. They therefore can provide compelling arguments for 

increasing mitigation ambition. In many instances, the health co-benefits have been shown to outweigh 

the mitigation costs. Nonetheless, a gap remains between the potential and the actual role of health co-

benefits in the development of national climate change mitigation policy and engagement with the 

concept by major international organisations. Possible explanations include the lack of political traction 

of health co-benefits, a dominant focus on cost minimisation (as opposed to cost-benefit analysis)362 

and barriers in research translation.363 Natural language processing (a subfield of machine learning) is 

used here to track the uptake and engagement of health co-benefits in policy discourse on social media 

of major international organisations (IOs) involved in climate change adaptation and mitigation work. 

With the dataset of IO’s tweets a search through the text of each tweet was performed to identify if they 

discuss co-benefits. First, this included the standard list of keywords used in WG5 analysis. This 

produced limited results as the terms are both not specific enough to co-benefits and also do not match 

well to the mode of communication on social media platforms. Next, a list of keywords was developed 

corresponding to seven exposure pathways linking mitigation action and health (e.g. air pollution, plant-

based diets)364, and terms directly relating to the concept of health co-benefits (e.g. ancillary benefits), 

and specific mitigation interventions expected to have health co-benefits (e.g. transition to renewable 

electricity generation). This approach was selected to encompass the overall concept of health co-

benefits of mitigation as well as the specific ways in which they might be achieved. A full list of search 

terms is provided below.  

An indicator of engagement intensity was developed as a monthly proportion of tweets containing at 

least one term from the search term list in relation to the total number of tweets by that IO. An originally 

written computational algorithm was developed to identify the lists of tweets that contain each of the 

keywords from a given list of keywords for each international organisation in each month of the 2010–

2022 period. All lists were combined and a list of unique tweets was identified by excluding any 

duplicate tweets that were the results of several keywords being mentioned in the same tweet. The 

number of tweets in these unique tweets list was the total number of keyword-mentioned tweets, used 

as the numerator. The total number of tweets written by each IO in a given month was calculated and 

the total sum as a denominator. The resulting indicator is simply a proportion calculated by dividing 

keywords mentions by the total sum. 

To identify the intensity for individual pathways the exact same calculations were performed but only 

using the keywords form a given pathway. Due to the presence of multiple keywords in the same tweet 

the sum of the number of tweets with each of the pathway keywords is not equal to the total number of 

tweets with all the keywords. 

Keywords: 

Direct co-benefits terms: health benefit, win-win, double dividend, benefit, cobenefit, 

co-benefit, secondary benefit, ancillary benefit, side benefit, collateral benefit, associated 

benefit, ancillary effect, knock on effect, ancillary impact, side effect, co-control, carbon 

benefit, reduction benefit, synergy, side effect, spillover, trade-off, distributional aspect, 

distributional effect, mortality impact. 



278 

 

Policy related terms: Paris Agreement, 2 degrees, 2C, 2°C, 1.5°C, 1.5C, Climate 

pledge, Climate goals, Energy pledge, Net-zero, NetZero, Zero emission, 

Decarbonisation, Decarbonization, Mitigate, Mitigation, Carbon neutral, Carbon 

neutrality, Low carbon. 

Intervention, Energy: Renewables, Solar, Photovoltaics, PV, Batteries, Wind, Coal, 

Clean energy, Energy demand, Energy use, Energy efficiency, Heat pumps, Building 

retrofit, Smart thermostat, Insulation, Net-zero buildings, Green roof, Cool roof, Electric 

vehicles, Clean cooking, LED lighting, Geothermal power, Fuel poverty, Energy 

poverty, Nuclear, Electricity, Hydrogen, Fossil fuel, Energy crisis, Energy investment, 

Affordable energy, Natural gas 

Intervention, Land use: Forest restoration, Tree plantation 

Pathway, Air Pollution: Air quality, Air pollutants, Air toxin, PM2.5 , PM25, particles, 

particulates, ozone, Smog, Soot, black carbon , short-lived climate pollutants, SLCP , 

SLCPs 

Pathway, Road transport noise: Traffic noise, Aircraft noise 

Pathway, Temperature: Urban heat island, Heat, Overheat, Carbon sequestration, 

Cooling, Humidity, Mold 

Pathway: Diet: Dietary, Nutrition, Meat, Dairy, Vegetarian, Vegan , Plant-based, Plant-

rich, 

Pathway, Physical activity: Exercise, Active travel, Walking, Walkable, Cycling , 

Bicycle, 

Pathway, Sustainable mobility: Public transport, Rail, Trains 

Pathway, Nature exposure: Green, greenspace, green space, Cooling, Trees, Forest , 

Nature based solution, Nature 

Data 

41 international organisations were selected based on IOs representing various sectors: economic, 

financial, environment, regional development, etc. The sample of IOs is based on a recent study on 

policy discourse in climate change adaptation IOs 365 and extended to cover mitigation IOs.  Twitter is 

used as the social media platform to collect official communication by IOs. All the tweets written by 

official Twitter accounts of the selected IOs were extracted for the period of 2010-2022. Since social 

media platforms have become one of the most common sources of information for journalists and the 

general public, policy actors utilise the platforms as the key mode of media and public engagement. 

Additionally, using the same platform and data structure allows a comparison of engagement across 

international organisations controlling for institutional variability in formats and modes.  

The final dataset contains 1,392,892 tweets written by 41 international organizations through the period 

of 2010-2022, from which 1,354,924 are English language tweets. These are all the tweets published 

by official twitter accounts of these organizations, including retweets and quotations. Since the majority 

of tweets are written in English and all keywords are in English, the further analysis below only works 

with the English language tweets and excludes all the tweets that do not have “lang=en” in the tweets 

language meta-data identifier. 

 

Organization Acronym Twitter handle Field Sector 
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Classification 

African Union AU _AfricanUnion Regional Cooperation adaptation 

Asian Development 

Bank 
ADB ADB_HQ 

Global Development 

Banking 
both 

African Development 

Bank 
AFDB AfDB_Group 

Global Development 

Banking 
adaptation 

The Africa Rice Center, 

formerly known as the 

West Africa Rice 

Development 

Association 

WARDA AfricaRice Food and Agriculture adaptation 

Asia-Pacific Economic 

Cooperation 
APEC APEC Regional Cooperation both 

Association of Southeast 

Asian Nations 
ASEAN ASEAN Regional Cooperation both 

European Bank for 

Reconstruction and 

Development 

EBRD EBRD 
Global Development 

Banking 
adaptation 

Economic Community 

of West African States  
ECOWAS ecowas_cedeao Trade and Economy adaptation 

European Investment 

Bank 
EIB EIB 

Global Development 

Banking 
both 

European Union EU EU_Commission Regional Cooperation both 

UN Food and 

Agriculture Organisation 
FAO FAO Food and Agriculture adaptation 

Pacific Islands Forum PIF ForumSEC Regional Cooperation adaptation 

International Energy 

Agency 
IEA IEA Energy Policy mitigation 

International Fund for 

Agricultural 

Development 

IFAD IFAD Food and Agriculture adaptation 

International Finance 

Corporation 
IFC IFC_org 

Global Development 

Banking 
both 

https://www.iea.org/
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International Monetary 

Fund 
IMF IMFNews 

Global Development 

Banking 
both 

International Renewable 

Energy Agency 
IRENA IRENA Energy Policy mitigation 

North Atlantic Treaty 

Organization 
NATO NATO Peace and Security  adaptation 

Organization of 

American States 
OAS OAS_official Regional Cooperation both 

Organization for 

Economic Co-operation 

and Development 

OECD OECD Development both 

Organization for 

Security and Co-

operation in Europe 

OSCE OSCE Peace and Security  adaptation 

United Nations High 

Commissioner for 

Refugees  

UNHCR Refugees Migration adaptation 

South Asian Association 

for Regional 

Cooperation 

SAARC SaarcSec Regional Cooperation adaptation 

Southern African 

Development 

Community 

SADC SADC_News Development adaptation 

Inter-American 

Development Bank 
IADB the_IDB 

Global Development 

Banking 
adaptation 

UN Security Council UNSC UN Peace and Security  adaptation 

UN Development 

Programme 
UNDP UNDP Development adaptation 

United Nations Office 

for Disaster Risk 

Reduction 

UNDRR UNDRR 
Disaster Risk 

Management 
adaptation 

United Nations 

Economic Commission 

for Europe  

UNECE UNECE Development both 

United Nations 

Environment 
UNEP UNEP Environment Policy mitigation 
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Programme 

United Nations 

Framework Convention 

on Climate Change  

UNFCC UNFCCC Environment Policy mitigation 

United Nations 

Population Fund 
UNFPA UNFPA Health adaptation 

United Nations 

Children's Fund 
UNICEF UNICEF Development adaptation 

International 

Organisation for 

Migration 

IOM UNmigration Migration adaptation 

United Nations Office 

for the Coordination of 

Humanitarian Affairs 

OCHA UNOCHA 
Disaster Risk 

Management 
adaptation 

World Economic Forum WEF wef Trade and Economy both 

World Food Programme WFP WFP Food and Agriculture adaptation 

World Health 

Organization 
WHO WHO Health both 

World Bank WB WorldBank 
Global Development 

Banking 
both 

World Trade 

Organisation 
WTO wto Trade and Economy both 

East African Community EAC jumuiya Regional Cooperation adaptation 

List of International Organizations with Sectors and Field Classification 

Caveats 

There are several limitations of the current analysis to be improved in the next iterations of this study. 

First, working with a limited predefined set of international organisations: the plan is to expand the set 

for the near universal set of international organisations with the active Twitter accounts. Second, the 

set of search terms will be further fine-tuned to provide a richer picture of co-benefits discussions. 

Additional Analysis 

IOs intensify their engagement with health co-benefits in their public discourse over time. Figure 178 

shows the dynamic of the intensity of engagement, which is the proportion of an IO’s Twitter posts 

mentioning co-benefits with respect to the total number of tweets by that IO. The structure of the 

measure suggests that the observed trend is not simply reflecting IOs’ increasing use of this specific 

social media platform, but rather a genuine increase in co-benefit topic engagement. The results show 

that by November 2022 22% (1896 tweets with key words /8625 total number of tweets) of all tweets 

written by the analysed IOs mention co-benefits. 
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Figure 178. Engagement intensity of IOs with co-benefits on Twitter (Note: Trend line is a fitted loess line 

with the shaded area representing a 95% confidence interval.) 

 

IOs in the sample are diverse both in terms of their sectoral focus and in terms of key operational 

focus on mitigation, adaptation or a mix of adaptation and mitigation work. Figure 179 shows the 

results of the analysis across the mitigation/adaptation/both categorisations. Mitigation IOs have a 

higher co-benefits engagement intensity compared to adaptation IOs (or IOs working both on 

mitigation and adaptation). Increasing time trends for all three groups of IOs can be observed, with 

the most evident growth after early 2016 likely linked to the Paris Agreement.  
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Figure 179. Engagement intensity of IOs with co-benefits on Twitter across adaptation, mitigation or both 

categorisation 

Sectoral analysis results are provided in Figure 180, showing clear sectoral differences in engagement 

intensity with co-benefits. The sectoral classification is adopted from Kural et al 365. The most 

intensive co-benefits engagement is from IOs in the Energy, Environment, Food and Agriculture, and 

Global Development Banking sectors.  

 

Figure 180. Sectoral analysis of engagement intensity of IOs 

The results for individual IOs are presented in Figure 181. IRENA and IEA (both from the energy 

sector) are the most prominent in their engagement.  
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Figure 181. Engagement intensity for individual IOs (Note: Names of the IOs listed according to the official 

acronyms, which are listed in Table A.1.) 

Topic modelling 

Figure 182 shows that the highest engagement intensity is around energy, nature exposure, 

temperature, policy specific, and co-benefits specific terms. As a validation exercise, the indicator 

also looked at the content of the tweets that contain the search terms. To do this at scale, probabilistic 

topic models are used 366 - a group of unsupervised machine learning techniques applied to the 

collected text corpus (tweets containing the keywords). However, for validation, in addition to 

identifying topic clusters in tweets, the indicator looked to understand if the topics identified are 

related to a set of covariates that capture specific characteristics of IOs and time-series dynamics. 

Structural topic models (STM) 367,368 are utilised for this task. Overall, there is evidence that, indeed, 

the content of the tweets picked up through the search terms is related structural IO and pathway 

characteristics. 

 

 

 

WARDA WB WEF WFP WHO WTO

UNECE UNEP UNFCC UNFPA UNHCR UNICEF UNSC

OECD OSCE PIF SAARC SADC UNDP UNDRR

IFC IMF IOM IRENA NATO OAS OCHA

ECOWAS EIB EU FAO IADB IEA IFAD

ADB AFDB APEC ASEAN AU EAC EBRD

2010 2015 2020 2010 2015 2020 2010 2015 2020 2010 2015 2020 2010 2015 2020 2010 2015 2020

2010 2015 2020

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Time

P
ro

p
o

rt
io

n
 o

f 
T
w

e
e

ts
 t

h
a

t 
M

e
n

ti
o

n
 D

e
fi

n
e
d

 K
e
y

 W
o

rd
s



285 

 

 

Figure 182. Exposure intensity by search term category 

Selecting the number of topics for analysis 

To identify the appropriate number of topics for the structural topic models, two main diagnostics 

measures are presented: semantic coherence (which is generally decreasing with the increase in the 

number of topics) and exclusivity (which is increasing with the increase in the number of topics). The 

indicator operates based on some known heuristics about the optimal balance between semantic 

coherence and exclusivity. Diagnostics for two main models of interest were performed:  

(1). Topic prevalence = beta0+beta1*IO_sector+beta2*Y+error 

(2). Topic prevalence = beta0+beta2*IO_field+beta2*Y+error 

where Y is a year, sector is a three-point factor variable (adaptation, mitigation, both), and field is an 

11-point factor variable, representing IOs field of operation (Development, Disaster Risk 

Management, Energy Policy, Environment Policy, Food and Agriculture Global Development 

Banking, Health, Migration,  Peace and Security, Regional Cooperation, Trade and Economy). Figure 

183 presents diagnostics results for Model 1, and Figure 184 presents diagnostics results for Model 2. 

As a result of these diagnostics, K=8 was chosen as the number of topics for Model 1, and K=6 as the 

number of topics for the Model 2. 
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Figure 183. Diagnostics for the Number of Topics Choice (for Sector Models) 

 

Figure 184. Diagnostics for the Number of Topics Choice (for Field Models) 

Sector-based STM 

The results below follow the first topic model, evaluating the effect of topic prevalence controlling for 

IO sectors: adaptation, mitigation, or both and the dynamic year effect. Figure 185 indicates the 

distribution of topics and Figure 186 presents the examples of the words for each of the topics.  
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Figure 185. Topic Distribution 

 

 

0.0 0.1 0.2 0.3 0.4 0.5

Top Topics

Expected Topic Proportions

Topic 5: energy, irena, renewables, renewable, solar, renewableenergy, new

Topic 1: energy, iea, global, electr icity, world, clean, new

Topic 6: green, energy, will, support, ebrd, eib, new

Topic 2: unece, forests, green, forest, sustainable, energy, new

Topic 4: climate, nature, can, climateaction, global, cop, world

Topic 7: energy, green, via, adb, can, solar, ifc

Topic 8: africa, exercise, african, energy, afdb, nato, development

Topic 3: nutrition, food, malnutrition, children, wfp, health, people
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Figure 186. The most indicative words for K=8 Topics 

Four topics were chosen with the largest prevalence across the documents: topics 4, 7, 3, and 8.  By 

looking at the most indicative words in these topics these were labelled by hand as Topic 3: Food and 

Nutrition; Topic 8: Development and Economy; Topic 7: Green and Energy; Topic 4: Climate Action 

and Nature. The effect of covariates of interest for each of these four topics was estimated. Figure 187 

shows coefficient plots for the coefficients of interests for IO sectors, where all the models were 

evaluated controlling for the yearly dynamic trends. Here it can be seen that adaptation IOs mostly talk 

about food and nutrition topics, and development. Mitigation-focused IOs are mostly active in climate 

change and support as well as energy and green advocacy rhetoric.  

 

Figure 187. Coefficients plots of the IO sectors for Selected Topics 

Another topic model evaluated was with respect to the sectors of the IOs, classifying selected 

international organisations over 11 sectors. 6 topics were derived from this, and Figure 188 presents 

topic prevalence with the seven highest probability words for each topic. Top words per topic are 

presented in Figure 189. 
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Figure 188. Topic Distribution 

 

 

 

 

Figure 189. The most indicative words for K=6 Topics 
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The three most prevalent topics for further analysis were selected: Topic 2: Food and Nutrition; Topic 

4: Energy, Green, and Sustainability; Topic 6: Energy, Green, Development; Topic 1: Climate, Nature, 

Climate Action. Figure 190 shows coefficient plots for these four topics for each of the IO fields, 

estimated on the model with additional controls on the yearly time trends. There is some variation in 

the topics and pathways that different IO fields speak about with topics of food, nutrition, health, and 

children is mostly covered by IOs specializing in health, food and agriculture, and migration. Energy 

and sustainability topics are mostly covered by regional, development, peace and security, and trade 

and economy IOs. Whereas climate change actions topics are expressed by environment policy oriented 

IOs. 

 

 

Figure 190. Coefficients plots of the IO fields for Selected Topics 
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Indicator 5.5: Corporate Sector Engagement in Health and Climate Change 

Indicator authors 

Dr Niheer Dasandi, Prof Slava Jankin 

Methods 

To produce the measure of engagement with climate change and health in companies’ UN Global 

Compact Communication of Progress (GCCOP) reports, the publicly available GCCOP reports were 

used. This approach to using the GCCOP reports to produce the indicators is based on identifying 

references to key search terms linked to (a) health, and (b) climate change: 

Health: malaria, diarrhoea, infection, disease, diseases, sars, measles, pneumonia, 

epidemic, epidemics, pandemic, pandemics, epidemiology, healthcare, health, mortality, 

morbidity, nutrition, illness, illnesses, ncd, ncds, air pollution, nutrition, malnutrition, 

malnourishment, mental disorder, mental disorders, stunting. 

Climate change: climate change, changing climate, climate emergency, climate action, 

climate crisis, climate decay, global warming , green house, temperature, extreme 

weather, global environmental change, climate variability, greenhouse, greenhouse-gas, 

low carbon, ghge, ghges, renewable energy, carbon emission, carbon emissions, carbon 

dioxide, carbon-dioxide , co2 emission, co2 emissions, climate pollutant, climate 

pollutants, decarbonization, decarbonisation, carbon neutral, carbon-neutral, carbon 

neutrality, climate neutrality, net-zero, net zero. 

These key terms have been updated from previous years to reflect the changing terminology used to 

discuss climate change. In order to produce an indicator of engagement with the intersection of climate 

change and health, the analysis focused on whether any of the climate change related terms appeared 

immediately before or after any public health terms in the COP reports. This was based on a search of 

the 25 words before and after a reference to a public health related term.  

Data 

To produce this indicator, the publicly available UN Global Compact COP reports are used. A total of 

39,159 reports were downloaded from COP. The reports are available for companies based in 129 

countries. GCCOP reports are submitted in 30 different languages. While in past years, the focus was 

only on the reports available in English; this year reports from all languages are included. In total, 

reports were submitted in 30 languages. 

Sector intersection climate health 

Aerospace & Defense 396 3489 7779 

Alternative Energy 588 7326 7980 
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Automobiles & Parts 792 12788 20106 

Banks 1014 19053 25927 

Basic Resources 0 5 17 

Beverages 771 9036 19889 

Chemicals 2454 17544 43072 

Construction & Materials 1796 23284 55997 

Diversified 2621 28677 59166 

Electricity 1418 24525 35642 

Electronic & Electrical Equ... 755 10854 21283 

Equity Investment Instruments 175 1605 2798 

Financial Services 2159 35162 42392 

Fixed Line Telecommunications 354 4215 10212 

Food & Drug Retailers 280 3106 8184 

Food Producers 2572 17733 71076 

Forestry & Paper 440 7832 9942 

Gas, Water & Multiutilities 833 13487 21458 

General Industrials 2441 29539 62901 

General Retailers 790 13664 27864 

Health Care 0 7 50 

Health Care Equipment & Ser... 1174 4865 47869 

Household Goods & Home Cons... 455 8434 15071 

Industrial Engineering 817 9288 19209 

Industrial Goods & Services 2 50 675 

Industrial Metals & Mining 1051 12438 29758 

Industrial Transportation 926 11603 21891 

Leisure Goods 97 2366 4001 

Life Insurance 749 4122 14059 

Media 237 4822 10931 

Mining 596 6057 16037 

Mobile Telecommunications 539 7410 13738 

Nonequity Investment Instru... 26 275 557 

Nonlife Insurance 429 4035 11201 

Not Applicable 201 3345 16174 

Oil & Gas Producers 2126 25404 42037 

Oil Equipment, Services & D... 332 3782 8306 

Other 0 26 146 

Personal Goods 556 6677 15847 

Pharmaceuticals & Biotechno... 2253 9054 73826 

Real Estate Investment & Se... 807 11032 18265 

Real Estate Investment Trusts 405 3105 3769 

Retail 3 49 415 
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Software & Computer Services 983 13004 25394 

Support Services 2083 27420 67211 

Technology 0 8 51 

Technology Hardware & Equip... 824 13657 23083 

Tobacco 2 48 137 

Travel & Leisure 660 10171 18993 

 

Table 93These reports were translated into English using the open-source pretrained neural machine 

translation model Opus-MTv under the Huggingface7 pipeline to implement the translation task. A 

number of the files were corrupt or could not be converted into plain text format for analysis. The 

distribution of available GCCOP reports over time is presented in Table 92:  

Year 
Number of 

reports 
 Year 

Number of 

reports 
 Year 

Number of 

reports 

2011 2057  2015 3472  2019 4060 

2012 3015  2016 3573  2020 3554 

2013 3231  2017 3724  2021 5737 

2014 3186  2018 3751  2022 6089 

Table 92. GCCOP reports by year. 

There are only single GCCOP report submissions before 2011, thus analysis is limited to the sample of 

GCCOP reports to the period 2011-2022. These were translated, pre-processed and prepared for the 

application of natural language processing by converting the reports to plain text format; removing 

punctuation and numbers; removing stopwords; regularising (lowercasing); and stemming. All pre-

processing and analysis was carried out in R using the “quanteda” package 360. 

In total, the GCCOP reports were submitted in 41 different languages. The majority were submitted in 

English with 24,360 GCCOP reports (54%) submitted in English. 

Caveat 

This analysis here is based on a narrow range of search terms, which excludes reference to many of 

indirect links between climate change and health. Reports may also discuss indirect connections, such 

as the effect of climate change on agriculture, however, these are not included here. Therefore, the 

results present a somewhat conservative estimate of high corporate engagement with the intersection of 

climate change and health. Future work in this area will consider engagement with these indirect links, 

as well as providing additional forms of analysis. 

Future Form of Indicator 

In the future, the indicator will look to include search terms based on indirect links between climate 

change and health (e.g., agriculture) to capture references to indirect links. 

Additional Information 

Figure 191 presents the total number of references to climate change, health, and the intersection of 

climate change and health across for the GCCOP reports. Despite the increase in the proportion of 

 

v https://github.com/Helsinki-NLP/Opus-MT.git 
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companies engaging with the climate change-health linkages, the overall number of references 

remains fairly low and consistent, relative to the individual references to health and climate change – 

though, there has been an increase in references to the intersection of climate change and heath in the 

past two years. 

 

 

Figure 191. Total references to climate change, health, and the intersection of climate change and health, 

2011-2022.  

In Figure 192, below, the total references with the intersection of climate change and health is 

presented to better show any trends occurring in engagement. The figure shows that since 2018 – and 

particularly since 2020 – there has been a sharp rise in the number of references. 
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Figure 192. Total references to the intersection of climate change and health, 2011-2022. 

Figure 193 shows the average number of references to climate change, health, and the intersection in 

GCCOP reports. The figure again demonstrates the relatively low level of engagement with the health 

impacts of climate change in GCCOP reports, compared to the separate references to health and 

climate change. 

 

Figure 193. Average references to climate change, health, and the intersection of climate change and health 

in GCCOP reports, 2011-2022. 

There is growing awareness of the gendered impacts of climate change and health. Considered here is 

the extent to which references to the health dimensions of climate change in companies’ GCCOP 

reports engage with gender issues, by further examining the references to the intersection of climate 

change and health. Once all references to this intersection in GCCOP reports for 2011-2022 were 

identified, additional search terms related to gender to identify which of the intersection references 

also engaged with gender issues. The gender-related search terms used were as follows: women, 

women’s, maternal, inequality, inequalities, gender, empowerment, sex, sexual, violence, violent, 

girls, reproduction, reproductive. Hence, the analysis considers whether the 25 words of text identified 

in the primary search (for climate change and health terms) includes a reference to at least one of 

these gender-related keywords.  

Based on the additional search of the references to the climate change-health intersection using these 

gender-related keywords, references to the health dimensions of climate change with a gender focus 

were identified in companies’ annual GCCOP reports. Figure 194 presents annual references to the 

gender dimensions of climate change and health in UN Global Compact COP reports between 2011 

and 2022. The figure shows a steady increase in engagement between 2015 and 2018. In 2019, there 

was a sharp rise, with 11% of all references to the intersection of climate change and health including 

a mention of one of the gender keywords, followed by a fall in 2020. Engagement with gender 

increased in 2022 to 10%. 
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Figure 194. Proportion of references to intersection of health and climate change in GCCOP reports that 

include a reference to gender, 2011-2022. 

Also considered here is engagement with climate change and health in the UN Global Compact COP 

reports by WHO region. Figure 195 shows the total number of references to the climate change-

health intersection based on which of the WHO regions a company is based on, and Figure 196 

shows the proportion of companies based in the different WHO regions that refer to the health 

impacts of climate change in their annual GCCOP report. 
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Figure 195. Total references with the intersection of climate change and health by WHO region, 2011-2022. 

 

Figure 196. Proportion of companies referring to intersection of health and climate change by WHO region, 

2011-2022.  

Figure 195 and Figure 196 show that the highest proportion of GCCOP reports engaging with the 

climate change-health intersection in recent years has come from corporations based in the Western 

Pacific. The lowest engagement comes from corporations based in the Eastern Mediterranean region. 

There has been rising engagement with health and climate change across all the regions.  

The indicator also considers engagement across different sectors. Table A3 shows the total number of 

references to climate change, health, and the intersection across the different sectors in 2022. Figure 

197 presents the proportion of corporations engaging with the climate change-health relations in each 

sector in 2022. 

Sector intersection climate health 

Aerospace & Defense 396 3489 7779 

Alternative Energy 588 7326 7980 

Automobiles & Parts 792 12788 20106 

Banks 1014 19053 25927 

Basic Resources 0 5 17 

Beverages 771 9036 19889 

Chemicals 2454 17544 43072 

Construction & Materials 1796 23284 55997 

Diversified 2621 28677 59166 

Electricity 1418 24525 35642 

Electronic & Electrical Equ... 755 10854 21283 

Equity Investment Instruments 175 1605 2798 

Financial Services 2159 35162 42392 

Fixed Line Telecommunications 354 4215 10212 

Food & Drug Retailers 280 3106 8184 
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Food Producers 2572 17733 71076 

Forestry & Paper 440 7832 9942 

Gas, Water & Multiutilities 833 13487 21458 

General Industrials 2441 29539 62901 

General Retailers 790 13664 27864 

Health Care 0 7 50 

Health Care Equipment & Ser... 1174 4865 47869 

Household Goods & Home Cons... 455 8434 15071 

Industrial Engineering 817 9288 19209 

Industrial Goods & Services 2 50 675 

Industrial Metals & Mining 1051 12438 29758 

Industrial Transportation 926 11603 21891 

Leisure Goods 97 2366 4001 

Life Insurance 749 4122 14059 

Media 237 4822 10931 

Mining 596 6057 16037 

Mobile Telecommunications 539 7410 13738 

Nonequity Investment Instru... 26 275 557 

Nonlife Insurance 429 4035 11201 

Not Applicable 201 3345 16174 

Oil & Gas Producers 2126 25404 42037 

Oil Equipment, Services & D... 332 3782 8306 

Other 0 26 146 

Personal Goods 556 6677 15847 

Pharmaceuticals & Biotechno... 2253 9054 73826 

Real Estate Investment & Se... 807 11032 18265 

Real Estate Investment Trusts 405 3105 3769 

Retail 3 49 415 

Software & Computer Services 983 13004 25394 

Support Services 2083 27420 67211 

Technology 0 8 51 

Technology Hardware & Equip... 824 13657 23083 

Tobacco 2 48 137 

Travel & Leisure 660 10171 18993 
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Table 93. Total number of references to health, climate change, and the intersection of climate change and 

health by sector in 2022.  

 

Figure 197. Proportion of corporations referring to climate change, health, and the intersection of climate 

change and health by sector in 2022. 

The highest level of engagement with the intersection of climate change and health in 2022 can be 

seen in real estate investment trusts (58% of companies), followed by mining (41%), alternative 

energy (39%), oil & gas producers (39%), and pharmaceuticals and biotechnology companies (38%). 

In contrast, there are surprisingly lower levels of engagement in the healthcare equipment and services 

sector, where 33% of companies refer to the intersection of health and climate change in their 2022 

GCCOP reports, while companies representing other parts of the health care sector do not refer to the 

intersection at all (0%). This does, however, represent a significant increase in companies in the 

healthcare equipment and services sector engaging with health and climate change in the GCCOP 

reports compared to 2021 (19% in 2021).. 

In addition to looking at companies by by WHO region, the indicator also considers companies from 

different types of countries in terms of their IPCC groupings. As noted in previous years’ reports, the 

SIDS have driven much of the engagement with the health impacts of climate change, as well as 

climate change more generally, in the international fora. As such, a SIDS grouping is included. These 

are presented in Figure 198 and Figure 199. The highest proportion of engagement from companies 

in North America, the SIDS, Oceania, and Asia. 
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Figure 198. Total references to the climate change-health intersection by country groupings, 2011-2022. 

 

Figure 199. Proportion of corporations referring to the climate change-health intersection by country 

groupings, 2011-2022. 

The indicator also considers corporate engagement with the health dimensions of climate according to 

the Human Development Index (HDI) categories of the countries in which companies are based. Figure 

200 shows the total references to the intersection of climate change and health in companies’ GCCOP 

reports based on the country HDI category (in 2021) and Figure 201 shows the proportion of companies 

engaging with climate change and health in their GCCOP report by HDI category. Figure 200 shows 

significantly higher references to climate change and health made by countries based in countries that 

have very high human development compared to companies based in countries with other levels of 

human development. However, this reflects the fact that the majority of companies included in the 

analysis are based in countries with very high human development levels. It is worth noting that even 

when considering the proportion of companies that engage with climate change and health (Figure 201), 
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it is the companies based in countries with very high human development that have highest engagement, 

followed by those with a high HDI. Lower engagement can be seen with climate change and health by 

companies based in countries with low human development levels.  

 

Figure 200. Total references to the climate change-health intersection by country HDI categories, 2011-

2022.  

 

Figure 201. Proportion of corporations referring to the climate change-health intersection by country HDI 

categories, 2011-2022. 
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